
Issue,27

Programming User Support

Appl ications

68000 TinyGiant
Low Cost 16-bit SBC and Operating System

$3.00

ISSN I 010-9331

The Art of Source Code Generation
Disassembling Z-80 Software

Feedback Control System Analysis
Using Root Locus Analysis and Feedback Loop Compensation

The Hitachi HD64180
New Life for 8-bit Systems

A Tutor Program for Forth
Writing a Forth Tutor in Forth

Disk Parameters
Modifying The CP/M Disk Parameter Block

for Foreign Disk Formats

THE COMPUTER JOURNAL
190 Sullivan Crossroadl

Columbia Falls, Montana
59912

406-257-9119 Features

The COMPUTER
JOURNAL

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Production Assistant
JudIe Overbeek

Circulation
Donna Carlson

Contributing Editors
C. Thomas Hilton
Donald Howes
Jerry Houston

Bill Kibler
Rick Lehrbaum

Peter Ruber
Jay Sage

Jon Schneider

Entire contents copyright©
1987 by The Computer Journal.

Subscript/on rates-$16 one
year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year In
Canada and Mexico, and $24 (sur
face) for one year in other coun
tries. All funds must be in US
dollars on a US bank.

Send subscrIptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
ColumbIa Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT59903.

Bulletin Board-Our bulletIn board
will be on line 24 hours a day at 300
and 1200 baud, and the number is
(406) 752-1038.

Address all edItorial and adver
tising inquIries to: The Computer
Journal, 190 SUllivan Crossroad,
ColumbIa Falls, MT 59912 phone
(406) 257·9119. '

The Computer Journal/Issue 1127

".
68000 TinyGiant

Hawthorne's 68000 Single Board
Computer combined with their $50
operating system
by Art Carlson 4

The Art of Source Code Generation
Disassembling Z·80 software to
produce modifiable source code
by Clark A. Calkins 8

Feedback Control System Analysis
Using Root Locus analysis and Feedback
Loop Compensation to solve closed
loop control problems
by Bert P. van den Berg 14

The Hitachi HD64180
Understanding the HD64180's advantages
over the Z'80, and how to use some of it's
advanced features
by Jon SchneIder 23

A Tutor Program for Forth
Writing a Forth Tutor in Forth
by Bill Kibler 36

Disk Parameters
Modifying the CP/M Disk Parameter Block
to read and write foreign disk formats
by C. Thomas Hilton 40

Departments
Editorial 2

C Corner
by Donald Howes 18

ZSIG Corner
by Jay Sage ~ 28

Reader's Feedback 34

Computer Corner
by Bill Kibler 52

1

,Editor's Page

CP/M is a registered trade.ark of Digital Research, Inc.

At the same time as the current
productS are being sold in volume, there
are also a lot of technical developments
taking place which will affect what we
buy in the near future - but these
developments are not taking place in the
consumer market which everyone is
watching, but rather in the industrial
market where they are not attracting
much attention.

There is a lot of talk about how much
power the Motorola 68020, 68030, and
68040 and the Intel 80286, and 80386 will
provide, but there is very little talk about
what kind of system architecture will be
needed in order to realize these benefits.
It's true that MicroSoft and others are
developing operating systems for the
80386, but apparently the hardware
people (remember that they are used to
dealing with buyers spending some one
else's money) are talking about putting it
on a glorified PC-type bus. That's like
putting a turbo-charged V-12 engine in a
old Ford model T.

I feel that the advanced business,
engineering, and industrial systems
which can properly utilize the power of
the new CPU's will be multiuser,
multitasking systems employing
mutiprocessors and will require a

The S.C.G. programs produce
fully commented and labeled
source code for your CP/M
system (the CCP and BOOS

areas). To modify the system to your liking,
just edit and assemble with ASM. CP/M 2.2 $45,
CP/M+ $75, + $1.50 postage (in Calif add 6.5').

"The darndest thing
I ever did see ... "

" ... if you're at
all interested in
what's going on in
your system, it's
worth it."
Jerry Pournelle,
BYTE, Sept '83

C. C. Software, 1907 Alvarado Ave.
Walnut Creek, CA 94596 (4l5}939-8l53

Source Code Generators
by C. C. Software can
give you the answer.

Ever Wondered What Makes CP/M® nck1

buying computers. When a government
agency buys a computer, the taxpayer
pays the bill. When a corporation buys a
computer, the company's stockholders
pay for it. Individuals, however, have no
choice but to spend their own money. So
the price of the machine, as well as its
features (clock rate, ease of use, bundled
software, etc.) become deciding factors
in a sale." George goes on to say, "Thus,
the key to next year seems to be in the
hands of individuals, just as it was in
1986. Will they continue to buy at the pace
they established in 19867"

Digesting what George said, I feel that
when corporations and government
agencies became the primary buyers,
most sellers structured their product
line, marketing organization, and pricing
for this 'big-business' segment. Now that
individuals and small companies are
again the primary buyers, these sellers
have too much built-in overhead cost and
are burdened with products and
marketing plans designed for those
spending someone else's money. The
ones succeeding in the current market
are the lean and hungry ones who can
provide the features and prices deman
ded by the individuals spending their own
money.

Market Developments
While some people claim that the per

sonal computer sales are flat because the
sales of their own products are low, and
others claim that the technology is
stagnate because all they see is the IBM
PC series, there is actually a great deal
of activity in both sales of existing
products and technical developments
which will lead to the next generation of
computers.

If anyone tells you that computers
aren't selling, show them the current
issue of Computer Shopper which has 408
pages mostly filled with ads for har
dware and software. Many of these ad
vertisers have been running full page or
even multipage ads in every issue, and
those I talk to assure me that the ads are
generating the sales to justify the cost of
the ads - they're selling a lot of har
dware, software, and peripherals - but
the market has made another abrupt
change. As pointed out in George
Morrow's column in Electronic
Engineering Times (January 12, 1987,
page 61), individuals started buying
again in 1986 while the corporations and
government agencies cut way back on
their purchases. To quote one small sec
tion of his column, "The personal com
puter market was launched by in
dividuals who were convinced that the
power of low-cost micros could be har
nessed to solve spreadsheet applications
and word processing chores, and it's no
secret that this type of customer doesn't
use the same criteria as corporations or
government agencies when it comes to

2 The Computer Journal/Issue 1127

reliable bus structure which provides for
interprocessor communications and
multiprocessor communications. I'm
sure that many readers will comment on
my negative stand on the current
multitasking and multiuser implemen
tations - and that's because I feel that
the currrent systems do not have suf
ficient power to properly execute these
feature. If we don't need these features,
then we don't need the new chips either!
I'm happy with my s-bit systems with
hard disks for wordprocessing which is
the majority of my work. I'll probably
upgrade to solid state RAM to speed
things up a little and avoid the disk noise,
but I surely don't need a 16-bit or 32-bit
CPU and I don't need multiuser or
multitasking for our operation (although
other larger operations may well need
this>. Eight bit systems are cheap, and if
I want to do several things at the same
time, I just use several systems at the
same time!

I am very interested in the new chips
for other applications, but when I choose
a powerful chip because of its features I
insist on being able to use ALL of its
speed and power! If limited power is ac
ceptable, I can provide that with existing
CP/M or PC-DOS equipment. If more
power is needed, then I want to be able to
use everyting that I can get.

The industrial market has already
developed architectures such as the
VMEb~ (Motorola) and Multibus lIi1l

(InteD which provide most of the
features required to use the full power of
the new CPUs, and 68020, 80286, 80386,
and WE32XXX single board computers
are readily available. Simple low power
systems can be used with a simple lo~
power bus - or even without a bus - but
high-power systems must be used with a
high-power bus in order to realize their
full potentials and to provide for expan
sion. I'll only be interested in using the
new CPUs on a standard open bus, ex
cept possibly for a dedicated single use
application such as a CAD station.

While we're talking about the new
CPU's, it appears that the software
developers have stopped their work on
the AT 80286 in favor of the 80386. Without
the software to make use of the '286's
features, the AT will just be used as a
fast PC instead of realizing its full poten
tial.

Why Companies Don't Succeed
Most companies want to have their

products considered for new designs, and
they spend a lot of money for slick four

The Computer Journal/Issue 1127

color ads, but then when we try to get
technical information they fall flat on
their face. An example is the AD639 Trig
Processor chip from Analog Devices. I
wrote three letters asking for tech info to
publish, but never received a response.
In November I finally phoned and talked
to someone in marketing who promised
to send the info. We still haven't received
anything, and frankly I'm no longer in
terested in dealing with them.

On the other hand, I called Hitachi for
info on their HD64180 and received a
large box of material. They also followed
up with a phone call to see if I had
received it and if I needed any further
help.

Guess which product I'll support. The
American companies will continue to cry
about how they are losing business to the
foreign producers, but in many cases it is
their own fault because while they spend
money on impressive advertising they
won't pay attention to customers and
provide support.

Hard Drives vs. RAM Disks
Hard drives are nice for operations in

volving a lot of disk access such as data
bases or compiling where the speed and
capacity advantages over floppies are
important - BUT remember that when
used continuously, every hard drive will
eventually FAIL! The question is not IF,
but rather WHEN. The expensive large
drives intended for mainframe ap
plications will probably last for a long
time, but some of the low cost drives for
micros are not so durable. In the case of
the 10 Meg drive for our BBS the
bearings gave out after about six months
of continuous operation. I noticed it in
time to save the data, but I'll have to
send the drive out for repair.

The board is running on just two flop
pies until I decide on a long term
solution, but I question if I want a hard
drive running 24 hours a day for seven
days a week. I may add more 96TPI flop
pies because the drives only run when
they are accessed instead running all the .
time like a hard drive. The real solution
will be to go to battery backed RAM disk
if and when I can justify the cost. I would
be very interested in feedback regarding
other people's experience with the life of
various models of hard drives.

Source Code
I realize that you get tired of hearing

me talk about source code, but having
the source code is what enables us to

(Continued on page 38)

M
o
V
I
N
G

?
•

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190Sullivan Crossroad
Columbia Falls, MT 59912

Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple II, 11+ •lIe, lIe. Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. IBM-PC, XT. and AT;
IBM Corporation. Z-80, Zilog. MT·
BASIC, Softaid, Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property of the
respective companies even if not
specifically mentioned in each oecuren
ceo

3

68000 TinyGi~nt

Low Cost 16-bit SBC and Operating System

by Art Carlson

There has been a lot of interest in a low priced 6llOO()ID

single board computer for experimenting or process control,
and a group of us got together at SOG last year to discuss the
situation. We are interested in the 68000 because it is big, fast,
cheap, and well supported. The 86 family is dominated by MS
DOS/PC·DOS'~ machines which are designed as office
machines, and the other 32 bit micro processors are not very
well supported. We wanted to work with a processor for which
books are available, and we also wanted other companies to
provide software for the new machine.

The major problem in experimenting with the 68000 has
been the lack of a readily available low-eost operating system
and programming utilities. As a result of our discussions, Joe
Bartel (Hawthorne Technology) offered to supply a single-user
version of his 68000 operating system complete with the source
code and the compiler for his HTPL~ language (in which the
system is written) for $50. He's even throwing in a line editor
and a 68000 assembler.

Once we had the operating system, we started searching for
suitable hardware since not all of us are interested in designing
and wirewrapping the main CPU board. I understand that some
people are porting Hawthorne's K-QS ONE- operating system
over to the Atari sr- (which is a great hardware bargain), but
we also need a small low cost board which can be mounted on
robotic arms and other places where an ST is too big or is
technically unsuitable. After all, for many controller ap
plications we don't need sound, graphics, drives, keyboard, or
monitor; but we do need complete bus access so that we can
provide lots of I/O. Joe came up with another winner which is
the 68000 single board computer he calls "The TinyGiant- ."

Every computer is designed to fill a particular goal or
market niche, and The TinyGiant was designed to be as low cost
as possible while still providing the needed features. The target
price was set at $395, and when a choice had to be made they
looked at the original goal. Then they looked at what was needed
to make a usable small developement system. There had to be a
disk of some kind. There also had to be enough I/O to support a
terminal and some kind of printer and a modem. They didn't put
a video controller on the board because they felt that many of
these would be used in places where video was not needed. Also
video would have made the board much larger and more costly.
Dynamic RAMs were used because of the lower cost.

The TinyGiant is a complete 68000 system on a single board.
The main component is the 68000 that runs at 8 Mhz. with no wait
states. There are two EPROMS, a dynamic RAM controller,
four RAM chips, and a 68681- dual serial chip. There is also an
unbuffered expansion bus provided.

The 68681 is almost a complete I/O system on a single chip.
There are two serial ports and a timer on the 68681. There are
also some extra input and output bits that can be used. Each
serial port has its own internal baud rate generator that can be

4

68000 TinyGiant

set from 50 to 9600 baud. The system startup assumes that the
console terminal on the fU'St port is set to 9600 baud. The other
port is assumed to be for a modem and is set to 1200 baud. This
port could be used to support a serial printer if a modem is not
needed. The timer is used as the basic system timer for a time of
day clock. When the PRN device is selected, a parallel printer
port made from a latched buffer is used.

The I71a- floppy controller can control up to four 5114 or 31,2
inch floppy disk drives. At the present time the software is only
supplied on 5114 inch floppy disks, but it will also be supplied on
31,2 disks in the near future. The 1710 controller has an internal
clocked digital data separater so no adjustments are needed.
There is no DMA controller so all I/O is done with interrupts.

The board is supplied with 128k of RAM but can be expanded
to 512k by simply adding the memory chips. The memory is con
trolled with an MBl~ dynamic RAM controller which takes
care of all the timing and refresh flJr the 64k x 4 dynamic RAMS.
There are four RAM chips in the basic machine, 12 more can be
added on board, and an expansion board can be added to provide
additional memory. There are two EPROMS that contain the
boot code and a very simple hardware debug monitor, and there
is a lot of empty space in the PROMS that could later be used for
code.

There are two expansion connectors that provide all the
needed address, data, and control lines. The 64 pin expansion
bus connector has all the raw signals just as they are on the
68000 itself and it is an unbuffered bus which means that buffers
have to be provided for the bus lines on the fU'St expansion
board. The other expansion connector has some signals derived
from logic on board. There is a priority interrupt encoder that is

The Computer Journal/Issue '27
fl

PI :ONNECTOR -- EXPANSION

of Unix like files instead of me control blocks like CP/M means
that any application written will still run even if there are
radical changes to the internal structure of the disks.

HT68K TlnyGlant Hardware Description
. There are 6 connectors on the TinyGiant board that connect

it to the real world. Two of these are for expansion, one for the
console serial port, one for the auxillary serial port, one for the
printer, and finally one for the disk drives.

The size and shape of the board is such that it can be bolted
to the side of a standard 5114 inch floppy disk drive, and the
power connector for the +5 and + 12 is the same as used on a
floppy disk drive. The +12 volts is converted to -12 for R8-232
by an onboard power converter. Most of the cheap PC clone
power supplies already have the connectors wired for floppy
disks so one of them can be used.

The expansion bus is divided between two connectors, PI
and P2. The PI connector brings out all the basic 68000 control
signals. These come directly from the 68000 cpu chip and are not
buffered. The remaining signals come from the P2 connector.
Any signal should be buffered before it is used on an expansion
board.

When power is applied the PROM is at location O. As soon as
the serial port is addressed the PROM is shifted into high
memory. This is taken care of in the boot PROM so all the user
will see is RAM memory at location O. The BIOS is in PROM so it
is assumed to run at $380000. All interrupts are auto vectored,
some are dedicated to devices on the board and some are
available on the expansion connector.

connected to autovector interrupts.
To use the TinyGiant you have to connect a power supply, a

terminal, and a disk drive. The board requires only 5 volts at
about 2 amp and some at + 12 volts for the RS-232 (the -12 for
the RS-232 is generated on board), and the power connector is
the same as a floppy drive. The EPROM monitor is set up to boot
the K-OS ONE operating system from a floppy disk when the
power is applied. All of this should be in a proper case, and any
of the cases for the Ampro Little Board~ should work fine
because the board is the same size. The cases and power sup
plies for the PC clones should also work and are available at
very low prices.

The software that comes with the TinyGiant has many
features that will remind you of CP/M~ or MS-DOS. The disks
are compatible with MS-DOS which means that you can move
data files from your new machine to your PC easily. The stan
dard command processor is modeled after MS-DOS but does not
have batch files. The editor is a line editor but is much better
than ED- or EDLIN~ . The assembler is a two pass absolute
assembler that has include files but no macros. The compiler is
for HTPL, the language used to write the K-OS ONE operating
system.

People who currently use a Z-8()'t and are interested in
moving up will be interested in the board. Also anyone who wan
ts to learn about the 68000 without having to dig through a dif
ficult operating system will like it. The price of the board is
competitive with the 80 and 86 family boards and so is the price
of the software. The small size and power make it great for con
trol applications. The use of MS-DOS compatible disks makes it
very convenient for data capture. The operating system makes
it good for a personal computer or for experimenting.

At the present time there are a limited number of programs
that will run under K-DS ONE. This will improve in the next few
months as the companies that purchased the first copies of K-OS
ONE bring their products to market. For any new system there
is a delay between when it is first delivered and when lots of sof
tware is available for it. Some of the software that will be
available is code that is being ported from other systems.

For languages there is the assembler and the HTPL com
piler that come with the basic machine, and the operating
system is written in HTPL so that it can be recompiled on the
system. Most of the development is being done in HTPL, but the
source code for the runtime library is written in assembler and
is supplied in source form. For many applications most of the
code can be written in HTPL with the speed critical portions
written in assembler. Also there are some functions that are
much easier to write or much smaller in assembler. I under
stand that a Ccompiler is being ported over to the system.

Externally, the operating system can look like anything you
want it to. The command processor provided looks a lot like M8
DOS but you can change it because it is a separate program like
the CCP is in CP/M and you are provided with the source code.
In a dedicated application the command processor could be
replaced by a menu to load a set of application programs. A
command processor could also be written that would make it
look like a Unix system was being used if that was desired.

Internally, the operating system resembles urnxe or M8
DOS 2.0 except that it is greatly simplified. All system calls are
done in a manner similar to MS-DOS where the required infor
mation is placed in a parameter block and then a trap instruc
tion gives control to the system. All error information is retur
ned in memory in the parameter block. This makes it very easy
to use system fuctions directly in a high level language. The use

The Computer Journal/Issue #127

1 = 04
2 =03
3 = D2
4 = Dl
5 = DO
6 = AS"
7 = UOS"
8 = lOS"
9 =R/W*

10 = OTACK"
·11 = SG*
12 = BGACK*
13 =BR*
14 = VCC, 5 V
15 =ClK, 8 MHZ
16 = GNO
17 = HALT*
18 = RESET"
19 = VMA"
20 = E
21 = VPA*
22 = BERR*
23 = IPl2*
24 = IPLI"
25 = IPlO*
26 = FC2
27 = FCI
28 = FCO
29 =Al
30 = A2
31 = A3
32 = A4

33 =05
34 = 06
35 = 07
36 = 08
37 = D9
38 = 010
39 = 011
40 = D12
41 = 013
42 = 014
43 = 015
44 = GNO
45 = A23
46 = A22
47 = A21
48 = vce, 5V
49 = A20
50 = A19
51 = A18
52 = A17
53 = A16
54 = A15
55 = A14
56 = A13
57 = A12
58 = All
59 = Al0
60 = A9
61 = A8
62 = A7
63 = A6
64 = A5

5

P2 CONNECTOR -- EXPANSION

P4 CONNECTOR -- MODEM SERIAL CONNECTOR
1 = GND 6 = NC
2 = RXD 7 = GND
3 = TXJ 8 = OCO
4 = CTS 9 = NC
5 = RTS 10 =RTS

1 = EXI02* 9 = EXI01*
2 +12 10 =DREQ*
3 -12 11 = NMJ*
4 vec, 5 V 12 = ExIR1*
5 = vee 13 = EXIR5*
6 = GND 14 = EXIR6*
7 =GND 15 =GND
8 = GND 16 = 16 MHZ CLOCK

P3 CONNECTOR -- DISK

1 = 3ND
3 = GND
5 = GND
7 = GND
9 = GND

11 = GND
13 = GND
15 = GNO
17 = GNO
19 = GNO
21 = GND
23 = GND
25 = GND
27 = GNO
29 = GND
31 = GNO
33 = GND

P4 CONNECTOR
1 = GND
2 = RXD
3 = TXD
4 = CTS
5 = RTS

2 = NC
4 = NC
6 = DSO
8 = IP

10 =DS3
12 = 052
14 = DSI
16 = ~
18 = OIR
20 = STEP
22 = WD
24 = WG
26 = TKO
28 = WP
30 = RD
32 = SIDE SEL
34 = NC

-- TERMINAL SERIAL CONNECTOR
6 = NC
7 = GND
8 = NC
9 = NC

10 = NC

Where Do We Go From Here?
It's very likely that the 68000 will replace the Z80 as the

choice for hobby and experimental projects, and the com
bination of the TinyGiant and the K-QS ONE operating system
will provide a very good development platform.

The lack of software is a major problem with any new har
dware or operating system - developers won't write the
programs until a lot of the systems are sold, and people won't
buy the systems until a lot of software exists - at least that's
true with a mass market appliance type computer. But this is
initially aimed at a different market, and I believe that
Hawthorne has made several very smart moves. For one,
they're supplying the system with the board, and the system
(whether obtained separately or with the board) includes the as
source code plus the language compiler, a 68000 assembler, and
a line editor so that you have the utilities to start writing
programs. Another very good move is that even though
Hawthorne is selling a single board computer, they still want to
sell their operating system to hardware companies even if they
are directly competing with Hawthorne! Joe has also been in
contact with a lot of potential 68000 programers who were
frustrated with the lack of a low cost operating system, and
there will soon be a rapidly expanding base of softwlU"e.

One of the most significant points is that you get the
operating system with the source code (plus the other goodies)
for only $50. Has anyone else ever supplied the as source code?
I doubt it, because many CP/M hardware vendors wouldn't even
supply the source code for their customized CBIOS. With the low
cost as and its source, you can customize it for your own par
ticular application, and it's cheap enough so that you can in
clude it with your software.

I feel that the use of K-OS ONE is going to expand very
rapidly, and we at TCJ are going to fully support this growth. •

68000 Reference Book List

INTERRUPT LEVELS
o = not an interrupt at al I
1 = external
2 = Printer, internal
3 = Serial, internal
4 = Floppy disk, Internal
5 = external
6 = external
7 = NMI, external

PR CONNECTOR -- PRINTER
1 = STROBE
2 = DO
3 = D1
4 = 02
5 = 03
6 = D4
7 = D5
8 = 06
9 = 07

10 = ACK BUSY

8

MEMORY MAP

SOOOOOO - S07FFFF
S080000 - S08FFFF
S100000 - S10FFFF
S180000 - S17FFFF
S200000 - S27FFFF
S280000 - S2FFFFF
S300000 - S37FFFF
S380000 - S3FFFFF

KAM ON BOARD
Xl
X2
PRT
SLK- FDC
510
Foe
PROM ON BOARD

68000 16/32-bit Microprocessor Programmer's Reference
Manual, by Motorola, Prentice Hall

68000, 68010, 68020 Primer, by Kelly-Bootie and Fowler, The
Waite Group, Howard W. Sams

The 68000: Principles and Programming, by Leo Scanlon,
HowardW. sams

68000 Assembly Language: Techniques for Building
Programs, by Donald Krantz and James Stanley, Addison
Wesley Publishing Company

68000 Assembly Language Programming, by Lance Leven
thal, Doug Hawkins, Gerry Kane and William D. Cramer,
Osborne/McGraw-Hill

The 68000 Microprocessor: Architecture, Software and Inter
facing Techniques, by W. Triebe1, and A. Singh, Prentice Hall

68000 Microprocessor Handbook, by William Cramer, AVM
Systems, Gerry Kane, Osborne/McGraw-Hill

68000 User's Manual, by J. Carr, Prentice Hall
MC68020 32 bit Microprocessor User's Manual, by Motorola,

Prentice Hall
Basic Microprocessors and the 68000, by Ron Bishop & the

Motorola Semiconductor Group, Hayden Books
Dr. Dobb's Toolbook of 68000 Programming, Edited, Prentice

Hall
Programming the 68000, by Rosenzweig and Harrison,

Hayden Books

The Computer Journal/Issue '27

Programming the 68000, by Steve Williams, Sybex Computer
Books

Self Guided Tour through the 68000, by M. Andrews, Prentice
Hall

TUllIO I'RQSIWIMEIIS-

.J"T .- .. r.;;;..~- IT. -

." ",. "A

The above books can be ordered from:
Magrathea

8842 Southeast Stark
Portland, OR 97216

Phone (503) 254-2005

68000 SINGLE BOARD COMPUTER
$395.00

32 bit Features I 8 bit Price

TUB' EUE.DERTM
Turbo EXTENDER provides you the 10110wing
powerful tools (0 break (he 64K barrier:

• UTf' Coli' Mod,1 allows programs 10 use all
640K without overlays or chaining, white
allowing you to convert existing programs with
minimal effort; makes EXE liles;

• M,ke F,citlt, offers separate compilation
etiminating the need lor you to recompile
unchanged modules;

• uTf' D,/~ Array, automatically manages
data arrays up to 30 megabytes as well as any
arrays in expanded memory (EMS);

• Alllllt/OII" Tumo EXTENDER 100/, include
Overlay Analys/. Disk Cache, Pascal Encryptor,
Shell File Generator, and File Browser.

The Turbo EXTENDER package includes two DSDD
disks, complete source code, and a 150-page
printed manual. Order now! $85 COMPLETE.

TDebuqptuS is a"'If, interactive symbotic de
bugger that integrates with Turbo Pascal to let you:

• Ellml., ,,,II eill"" "rllIIl" at runtime
using symbotic names - including records,
pointers, arrays, and tocal variables;

• Tflu ,.11", 1I",tpo/,," using procedure
names or source statements;

• "".IO.re, coli' while debugging;
• U" T,,1I0 P"e,1 ,lIlIor ,,,II DDS DEBUG

c.mm••II•.
TDebugPLUS also includes a special MAP lile
generalion mode tully compalibte with externat
debuggers such as Periscope, Alfon, Symdeb, and
others - even on programs writ/en with Turbo
EXTENDER

An expanded, supported version 01 the acctaimed
public domain program TDEBUG, the TDebugPLuS
package includes one DSDD disk, complele source
code, a relerence card, and an 80-page printed
manual. 256K 01 memory required. Simplily
debuggmg' $60 COMPLETE.

,."~

...em DE'1IS8/.8 'RUSTIIAT/,••

-Software Included:
* K-oS ONE, the 68000 Operating

System (source code included)
* Command Processor (w/source)
• Data and File Compatible with

MS-DOS
* A 68000 Assembler
• An HTPL Compiler
* A Line Editor

-Hardware features:
* 8MHZ 68000 CPU
* 1770 Floppy Controller
* 2 Serial Ports (68681)
* General Purpose Timer
* Centronics Printer Port
* 128K RAM (expandable to

512K on board.)
* Expansion Bus
* 5.75 x 8.0 Inches

Mounts to Side of Drive
• t5v 2A, t12 for RS-232
* Power Connector same as

disk drive

Add a terminal, disk drive
and power, and you will have
a powerful 68000 system.

For your existing 68000 hardware, you can get the K-OS ONE
Operating System package for only $50.00. K-oS ONE is a powerful,
pliable, single user operating system with source code provided

for operating system and command processor. It allows you to
read and write MS-DOS format diskettes with your 68000 system.

The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

K·OS ONE, 68000 OPERATING SYSTEM

SHIPPED ON AN MS-DOS 5 1/4- DISK. .

TUB,,.,rtER UTILmESTM
..II you own Turbo Pascal, you should own
TurboPower Programmers Utilities, that's all there
is to it. .. Bruce Webster, BYTE M~"li",

TurboPower Utilities offers nine powerful pro
grams: Program Siructure Analyzer, Execution
Timer, Execution Proliler, Pretty Printer, Command
Repeater, Pattern Replacer, Dilference Finder, File
Finder, and Super Directory.

The TurboPower Utilities package includes three
DSDD disks, relerence card, and manual. $95 with
source code; $55 executable only.

ORDER DIRECT TDDAYI
• MC/VISA C~II Toll Fre, 7 days a week.

800-538-BI57 x830 (US)
BOO-672-3470 x830 (CA)

• Umil,d Tim, 0",,1 Buy two or more
TurboPower products and save 15%!

• S,t/,/ut/on Gu,ranleed or your money back
within 30 days.

For Brochures, Dealer or other Inlormation,
PO, COO - call or write:

~O
3109 ScollS Valley Dr., 1//22

.. Scotts Valley, CA 95066
(408) 43B-8608

•• M-F 9AM-5PM PST

The ibo., TurboPorrer products reqUire Turbo Pascal 3.0
(stindilrd, 8087, or BCD) inD PC-DDS 2.X or 3.X. and
run on the IBM PC/XT/AT ind compatibles.

•

*

*

*

*

*

$395.00

*

*

. $50.00

*

*

•

*

*

•

*

*

*

•

HAWTHORNE TECHNOLOGY

8836 S. E. Stark
Portland, Or 97216

*

•

*

••

*

*

**

•

Order Now:
VISA, MC

(503) 254-2005

*

*

•*

ASSEMBLED AND TESTED ONLY

The Computer Journal/Issue 1127 7

The Art of Source Code Generation,
Disassembling Z-80 Software

by Clark A. Calkins, C.C. Software

Introduction
What is source code generation all about? Well, I consider

this as the process of creating usable program source code in
some language that is equivalent to an initial executable
program. By usable I mean that the source code has been suf
ficiently documented or commented such that you or someone
else schooled in the language can understand what is going on.

If you already have an executable program, why would
anyone want the source code? The truth is, many users would
not. But if you ever wanted to change a program, source code
makes it much easier. In some cases, it is not practical to
change a program without the source. Besides the necessity or
desire to change a program, some people would just like to un
derstand how it works.

Why is it that software producers very seldom make source
code available for their products? There are several reasons (or
excuses) for not releasing the source code. These include 1)

.....you don't need it, program XYZ works perfectly as it is", 2)

.....you could then make copies and give these to others", 3)

.... .it's too complicated, you couldn't understand it" and so on.
Actually, the real reason is that software writers feel that their
programs represent private and creative thoughts and that they
loose privacy if the source code gets out of their control. There is
a mystique to writing programs and programmers tend to keep
it that way. Aform of "job security."

However, users do have a legitimate requirement for source
code. After all, the programmer wrote the program to do what
he/she thought was the best, but the users generally have dif
ferent ideas and frequently want to change the default values
which were selected by the programmer. Some programs come
with installation instructions that do allow some flexibility in
this regard, but this is not always enough. If you ever wanted to
learn how to write an operating system or compiler and only had
a book or two for reference, you would then see the advantage of
having some source code to refer to. This is indispensable!

Can the source code for any program be produced?
Theoretically the answer is yes. However, from a practical
standpoint, only a few programs would be worth the effort in
volved. The idea to keep in mind, is that if the computer can
execute the program, it can be disassembled. This is because
the process of disassembling a program is really a conversion
from one language (machine code) to another. Like translating
a book from German to English except there are no ambiguities
to worry about. Documenting the program now involves just
time and effort (maybe quite a lot of these).

The specific type of source code generation I am going to be
dealing with here, is the creation of Z-BO assembly source code.
If it were desired to create Pascal or Fortran source code
(assuming the program was written in one of these languages),
the first step would be to produce assembly instructions and
convert groups of instructions into source statements. This

8

would require a thorough understanding of the code produced by
the compiler. Adifficult task indeed, but it can be done.

In addition, I will be assuming that CP/M is the operating
system being used and that it is desired to disassemble a normal
transient program and not a ROM or other type of program
storage. These are slightly more complicated as the execution
address may differ from the physical address.

The disassembler I use is my own (the Masterful Disassem
bIer or MD for short) but most any quality disassembler can be
used. It is most handy if the disassembler allows label names to
be associated with addresses and also supports comments lines.
All disassemblers I know of allow you to define which areas of
memory are instruc.tions and which are data (the more data
types supported the better). You will find it particularly handy if
the disassembler will recognize tables of addresses and put
these into its label pool.

If the disassembler you use does not allow label names and
comments to be entered, then you will have to work from a prin
ted listing and use an editor to keep track of things. This is a lot
more trouble on large disassemblies because up-to-date listings
may take hours to generate and you will be tempted to try and
get by with older ones. This will sooner or later cause
duplication of effort as you re-comment some areas a second
time.

For an example, I will be referencing TURBO Pascali!> .
This is because I am familiar with it and it encompasses many
features common to most assembly language programs.

There is a knack to disassembling programs. After you have
done one, the next comes easier. Just like programming.

Choosing the Proper Candidates for Dissection
Before setting cut to produce source code for that super new

program, you first want to know if you can succeed. Before I
embark on a new project, I ask myself these questions:

• Is there a real use for the source code for this program?
• Is the program small enough that I can complete this

project in a reasonable amount of time?
• Was the program written in assembly or at least compiled

with a good (non-threaded) compiler?

Disclaimer
The gUidelines contained herein are for educational pur

poses only. The legality of disassembling a program is not
totally free from doubt (although it is done on a routine basis>.
Software licenses may impose limitiations that the user should
be aware of. It is certainly not the intent of this article to deprive
any software producers of rightfully earned revenues.

The Computer Journal/Issue 1127

• Is the program static or does it move itself around in
memory?

The answer to these questions, when taken together, help
me to decide whether or not to try to disassemble a program. I
really try to avoid programs tha~ move themselves in memory
(!ike DDT does). I know of no disassembler which can handle
these types of programs successfully. The program size is also
very important. I have found that, on the average, every
processor instruction, uses 2 bytes of memory if it is 8080 code
and 1.5 bytes if it is well written Z-BO code (this includes most
normal data areas). This means that an 8k program would
result in 5333 lines of Z-BO assembly code and when commented,
will take up lOOk of disk space. I don't recommend users try
disassembling programs in excess of 16k (unless they have a
VAX to work with!).

How can you tell if a program was originally written in
assembly language and is this really important? With some of
today's optimizing compilers, this question becomes less impor
tant. But in general, when I first look at a disassembly of a
program I want to see if there is a consistent flow of logic to the
code. When I see code that is composed of a seemingly endless
series of calls to subroutines grouped at one end of the program
(either low or high addresses), I know this came from a
threaded type compiler and will be a bear to disassemble. I like
to see subroutine calls followed by code that uses the z-ao flag
register (like "CALL 1234" followed by "JR NZ,4567")' This is
the way assembly programmers work but few compilers are
smart enough to do this. Most would have inserted a "AND A"
or similar instruction. Additionally, compilers produce code
that executes under all conceivable conditions. Thus there will
be many absolute jump instructions and few relative ones. If
you find that you cannot tell if the code was produced by a com
piler or an assembler, then it probably does not make much dif
ference.

Over the years, users have suggested various projects for
disassembly. These have ranged from fairly reasonable ones
like MP/M, OASIS, and MS-DOS to absurd ones like ED and
LOTU8-123. Who even uses ED, and who has enough disk space
to hold LOTUS?

The Process of Generating Usable Source Code
Prior to disassembling a program, you want to learn as

much about how it works as you can. You need to know exactly
what the program does and have a reasonable idea of how it
does it. When you understand what a program does on a gross
level, you will be able to understand the finer details when you
get to them.

When I start on a disassembly project, I find it is generally a
six step process.

1) Understand what the program does and how it functions.
2) Determine the begin, end, and initial execution addresses.
3) Identify the instruction and data areas.
4) Isolate the subroutines and identify the lowest level ones.
5) Comment and label the subroutines.
6) Comment and label the main program code.

Before you can effectively lise a disassembler, you will have
to know the bounds of the program you are dealing with. I
generally use DDT to get a rough idea of the end address. This
will display the address of the physical end of the executable
file. The actual end of the program is somewhere before Uus.

The Computer Journal/Issue 1127

Depending on the type of program, it mayor may not be easy to
.locate an effective ending address. At the very least, you can use
the physical end address until experience indicates otherwise.

With most disassemblers (especially MO) you will want to
identify those areas of the program that contain data and not in
structions. You can spot the larger data areas using a
hexadecimal and ASCII dump of the program (DDT can be used
if the disassembler does not support this). Message areas are
quite easy to find, but binary data can be hard if it is not all OO's
or OFFH's. Of special importance is the location of any address
tables. When disassembled, these tend to show up as series of
LD C,C or other "meaningless" instructions. Depending on the
program, the address table might be next to another key table.
For example in TURBO Pascal, the editor uses an input com
mand table followed by a corresponding address table.
Programmers tend to keep these close together as it makes it
easier to write and maintain the program.

An important point to remember is the documentation that
came with the program. At times there is a wealth of infor
mation here. You will be particularly interested in the following
items:

• Error code and error message cross references. What
situations lead to the different errors?

• Internal data structure areas. S0me of this information may
be found in a section which details the interfacing of external
programs or subroutines.

• Program options. If there are several options (or "swit
ches") available, what are the defaults and how are they used?

• Names. The manual may use mnemonic names while
describing an internal function. For example the TURBO
Pascal manual uses FIB while describing file interface blocks.
Maintain these same naming conventions.

TURBO Pascal is a good example as the manual goes into
considerable detail on the structure of some internal data areas
like the file interface blocks and the storage of real and integer
type numbers. Plus a memory usage map is provided. Very
handy! There are three very gross sections to all programs.
These are 1) the initialization section, 2) the main working sec
tion, and 3) the wrap-up section.

Initialization
There are certain similarities among most programs when

it comes to initialization. One of the first things a program is
going to do is setup a machine stack area. This is because CP1M
does not define how much stack space is already available. To
be safe, programs will generally set their own space aside for
this. It is easy to spot. You are going to find a LD SP,nnnn or
similar type instruction very early in the initialization phase.
Secondly, the memory limits will have to be established. For
programs that want to use all available memory, there will
something similar to LD m..,(0006) followed by LD (nnnn),m...
This is because CP1M maintains a jump instruction to the BDOS
at location 5 and this is the lowest location used by CP1M.
Everything below this is available for the program to use. On
occasions you will find a program that does not use too much
memory and then it merely saves the return addrea by POP HL
and LD (nnnn),m... This allows the program to return to CPIM
without having to do a warm boot. Thirdly, certam data areas
will have to be preset, and then the screen will be setup with a
sign-on message (this varies the most between programs) .

9

When you disassemble a program, first jump to the
initialuatlon area. You will want to identify the stack area
which more than likely is close to other data storage areas. You
should also be able to locate the scr~n I/O routines as the
program will surely do some kind of screen output during
initializabon.

There are two common means of outputting a string of data
to the screen and you want to find out which method is being
used. TIm wl1J aid in the remainder of the disassembly. The first
way is to load the address of the string into a register pair (like
HLl and then call a routine which outputs the characters. The
other way is to call an output routine and have the string im
mediately following the call instruction. In either case, the
strings will start with a character count byte or terminate with
an "unprintable" character (like 00 or OFFH). CP1M programs
commonly use a dollar sign ("$") as a terminator as this is con
sistent with the BDOS string output function. Determine which
method is being used so you can spot and comment these areas
as you find them.

You can identify the data areas being initialized but since
you probably do not know what these are used for, you cannot
add meaningful label names or comments. But have patience,
you will be learning a lot more as time goes on.

Main Program Body
This is the heart of any program and the section which is dif

ferent for every one. Luckily programs are generally written in
a modular fashion. Sections of code perform a specific task. This
makes it easier for the programmer to write and later debug it.
And happily it makes it easier to disassemble. TURBO Pascal
had three main portions that were disassembled separately
(run-time library, editor, and compiler>. By locating the logical
divisions of a program, you can minimize the cross com
munication which hinders the disassembly process.

When you first start on the main program section, keep in
mind that a program is a collection of subroutines tied together
in a particular order. As you browse through the code initially,
try to get an idea of the programming style. Items to keep track
of are:

• Are subroutines generally kept in one location (like the
beginning or end of the program) ?

• Is there a constant pattern of calling subroutines (certain
registers always used for arguments)?

• Do routines always terminate in a return instruction? Or do
they use jumps to other routines to save time?

• Are certain registers "sacred" and not used by
subroutines?

• Do subroutines always preserve registers?

To answer these questions, examine the first few
subroutines you find. These are easy to spot. Just check the
destination of the call instructions. You do not have to under
stand the routines right off, but make notes concerning any
similarities that stand out. If the program was written in a high
level language, there will be many (and often wasteful)
similarities.

With these ideas in mind, the next step is to identify as many
of the individual subroutines as you can. If you can insert com
ments with the disassembler, try to separate the routines with a
blank comment line or two. Some disassemblers do this
automatically when they encounter a return instruction. Most,
including MD, do not.

10

When beginning to disassemble a subroutine and comment
it, remember that subroutines are often nested (subroutine A
calls subroutine B which calls subroutine C, etc.>. You will find
it easiest to locate the inner most subroutine (the one that does
not call any other subroutine within the program area that has
not already been disassembled) and begin there. These are
generally smaller with an easier to understand, more direct
purpose. You will find that by documenting one of these low
level routines and changing the references to it to a meaningful
name like "OpenFile", you can go back to a parent subroutine
and understand it a little easier. Then go back to its parent
subroutine and so on. Because a subroutine is generally referen
ced by many others, documenting these small ones has a
pyramid effect. This bottoms-up process is essential for even the
smallest programs.

Initially look for CP1M BDOS references. These are call or
jump instructions to location 0005. The process to access CP1M
is well defined. The function number is loaded into register C
and any parameters use register pair DE. You might have to
look a few instructions ahead of the BDOS call (or jump) to find
where register C is loaded. Then refer to the CP1M Reference
manual for the meaning of this function. Keep a chart on the
wall with a summary of these functions. You will refer to it of
ten. By using this approach, you can identify the file routines
(open, close, read, write, delete, rename, etc.> and the console
routines (character input, character output, status, etc.).

It should not take too long to disassemble and comment the
lowest two levels of subroutines. You should then have labeled
subroutines like "CreateFile", "PrintChar", "WriteFile",
"ConsoleStatus", etc. These will be the work horse of the
program as all other subroutines will need to use these.

There will come a time when you seem to be unable to
progress with this bottoms-up approach. Maybe by the third or
fourth level of subroutines. At this time, you need to call upon
your knowledge of what the program does and start a top-down
approach. You will need as much information as you can get on
how it functions. For example, if you are disassembling an
editor (like the editor portion of TURBO Pascal), you know that
this will read the keyboard, determine if the key (or keys) con
stitute a command or data to be added to the file. Then you will
look at those subroutines that reference the keyboard (either
directly or via a status check subroutine). One of these routines
will have to determine if the key is a command key. In TURBO

. Pascal, commands consist of a control character followed by
another character. By examining the data areas initially you
have already found the location of the key translation table.
Then the subroutine you are looking for will contain a reference
to this table. When it is found (it must be there) you then
discover that it also references another data area at the same
time. Isn't that interesting? Looking at the code shows that as it
scans the key translation table, it keeps a count of which one
matched (if any>. Then when a match is found, it doubles the
count and adds it to the start of the second table. Because you
know that addresses in the Z-80 are two bytes long 06 bits), you
then determine that the second table is a table of subroutine ad
dresses for all possible commands. Now we are really getting
somewhere! Looking at the documentation determines what
functions are performed for the different commands. All of a
sudden you have determined the address and function of many
more subroutines. Of course you quickly document and label
these.

Every once in a while you may find yourself hopelessly lost
within a particular subroutine. At these times, document it as

The Computer Journal/Issue #127

CALL NOW - CALL COLLECT (415) 376-0125

BEAR ELECTRONICS, P.O. Box 61, Moraga, CA 94556

some reBInaion, IIQPty 10 credit and larOlQ~
tity orders. Call for infol'mOOtl. AIcM 2 • 3 weeks
tor 122A. 222 or 321 systems.

C8MPU TERS ,NCORPC~ATEO

PO'sCHECKS

zao Turbo Modula-2 (1 disk) $69.95
The best high-level language development system for your Z80
compatible computer. Created by Borland International. High pertor
mance. with many advanced features; Includes editor. compiler,
linker, 552 page manual. and more.

• Z Best Sellers •

DSD (1 disk) $129.95
The premier debugger for your 8080. Z80. or HD64180 systems. Full
screen. with windows for RAM. code listing. registers. and stack. We
feature ZCPR3 versions of thIS professional debugger.

Z-Tools (4 disks) $150.00
A bundle of software tools individually priced at S260 total. Includes
the ZAS Macro Assembler. ZDM debuggers. REVAS4 disassembler.
and ITOZiZTOI source code converters. HD64180 support.

__I

PUBLIC ZRDOS (1 disk) $59.50
" you have acquired ZCPR3 for your ZllO-compatlble system and want
to upgrade to fUll Z-System. all you need is ZRDOS. lRDOS features
elimination of control-C after disk change, public directories. faster
execution than CP/M. archivestatus loreasy backup. and more!

Quick Task (3 disks) $249.00
Z80/HD64180 multitaslting realtime executive lor embedded com
puter applications. Full source code. no run time lees. site license for
development. Comparable to systems from $2000 to $40,000'
Request our free Q.T Demonstration Program.

Z-COM (5 disks) $119.00
Easy auto·installation complete Z·System tor virtually any Z80
computer presently running CP/M 2.2. In minutes you can be running
ZCPR3 and ZROOS on your machine. enjoying the vast benefits.
Includes 80+ utility programs and ZCPR3: The Man,*.

1fl.' Linle Board sac 249.00 224.10
'B·2 lint. IIoordlPLUS SBC 289.00 260.10
2A.:I linle 8oardI188 sse 495.00 445.50
2A-P Proto Board '79.00 161.10
2VR Video RAM Eml.Mator '95.00 175.50
3A·l STO B"" SCSI VO Ilootd 119.00 107.10
'22A CPftJI SyStem wl2 Onvw 995.00 895.50
222 PC-DOS System wl2 Dr_ 1295.00 1165.50
32' E"IlOl1d_ F'C-DOS Sys'em 1395.00 1255.50

PI_ Odd 13.00 ($8.00 on _eml) to< UPS ""IlP'''9 & handli"9.
Cahfornia reeident, add appropriate ._ tax.

@)
Z·SySlen1 OEM inquuies invited.

_ • Vi5aiMaslercarCl aceepled ACId S4 00
_, Shlpatng:handhng.n North Amer·ca. actual

- Echelon, Inc. cost .'sewh.'. Soec,ty "IS' lo'mat

885 :'1. San Antonio Road· Los Altos. CA 94022
415/948-3820 IOrder line and tech support) Telex -1931646

"> .~~~-~~

BEARELE~;;;~~;
SAVE 100/0 on AMPRO
ALL AMPRO PRODUCTS READY FOR IMMEDIATE SHIPMENT

SOME EXAMPLES
' (Other AMPRO products avaolable
. al SImilar savIngs.)

~ DESCRIPTION REG. PRICE DISCOUNT PRICE

best you can and put the remainder off until later. As you
disassemble the rest of the code, you will find out under what
circumstances this subroutine gets executed. This may give you
the insight you need to understand it.

Stumbling Blocks
By the very nature of assembly programming, it is possible

to write real obscure code. Code can be self-modifying, self
relocating, or a combination of these and you will have fits
trying to disassemble it as the code may not function as it first
appears.

Termination
Like the initialization section, the termination portion of a

program is fairly standard. The program has to clean up and
then get back to CPIM somehow.

The process of cleaning up may be trivial for some
programs. Others may have to flush buffers and close data files.
Some times the stack pointer is reset to the value it had when the
program was first executed. This seems to be common even
though it is not required by CP1M. If buffered data output is
used, then the program must be sure the buffers are flushed
(written to the disk) prior to closing the files. There are two
common procedures to flush buffers. The first is to have a
separate subroutine that writes the current buffer as it is. This is
the "cleanest" method but takes some extra memory. The other
process is to write enough end-of-file marks as to be sure to
overflow the buffer which causes it to be written. If the buffer
holds 1024 bytes, then if that many EOF's are written to the buf
fer. you "know" that it must have been written. I do not consider
this as clean as the first approach as it could result in an extra
buffer being written, but it generally takes less memory to im
plement.

Self-modifying Code
There are many possibilities here. I will touch on a few of

the most common techniques I have run across. Self-modifying
code is used to either save memory (possibly increasing
execution speed) or to confuse the person trying to disassemble
it.

One very common procedure is to alter the contents of a
data item being loaded into a register. The instruction "LD A,O"
may be changed into "LD A,S" by writing a S into the second
byte of the instruction. By using this type of code, the execution
speed is improved (an immediate load is about twice as fast as
an indirect load) and the code is a little smaller. Some
disassemblers point out these types of self-modifying code (MD
does not). If not, these are easy to spot. Just look for unresolved
address references that are within the boundaries' of the
program code.

Amore difficult type of self-modifying code to locate is when
the instruction itself is changed. Some subroutines (mainly I/O)
have complement functions. For example reading or writing to
a file. Because they are very similar, programmers are tempted
to "re-use" the same subroutine for both functions. Only a flag
or register value indicates which function is to be performed. An
example is a file I/O routine that sets a flag based on the conten
ts of register A. The instruction that sets the flag is either an
"INC A" or "DEC A". Prior to calling the routine, this instruc
tion is modified to provide the desired function. Since these dif
fer by only a single bit (3C and 3D hex respectively), a clever
programmer could have code such as;

The Computer Journal/lssuell27 11

,
While this type of code would be difficult to manage because

it would have to remember the last state, it could be made to
function.

By jumping into the middle of the instruction at "ReadFile"
the program is able to set a flag byte (using register A) that is
zero on a write and non-zero on a read. This saves a few bytes
and drives the disassembler crazy! Change these into
something like:

ReadFi Ie: DB 3EH
WriteFile:XOR A

AND A
PUSH AF

And add some good comments so you will know what is
going on the next time you have to look at this.

One way of logging an error message where it is desired to
load register Awith a value (say from 1 to 5) to correspond to an
error code, could be done as follows:

Error5: INC A
Error4: INC A
Error3: INC A
Error2: INC A
Error1: INC A

LD (ErrorCode),A

To log an error then, the following sequence would'work
(this saves a single byte for each occurrence).

XOR A
CALL Error4

Relocatable Code
The z-ao does not process relocatable code. So the program

must handle the relocation task itself before it is executed.
While there are many ways to do this, the most common
procedure to to maintain a table of those address that have to be
relocated. TURBO Pascal, in the overlay command processor
(TURBO.OVR) uses this technique. The program is assembled
as if it begins at location zero (or some such address). Just prior
to being executed, a relocation routine moves it to the
destination address (in the case of TURBO.OVR this is high
memory) and then changes all address references accordingly.
Finally the program is executed.

A second procedure is to maintain a bit map table within the
program (some assemblers help you maintain such a table).
This table has a bit for every byte in the program. If the bit is
set, the corresponding byte must be relocated. This works for
programs which are relocated by a certain number of pages (256

bytes to a page). That way only the high byte of an address must
be changed.

Trick Code
You may find that assembly programmers love to use cer

tain "tricks" that improve execution speed or save memory.
You have to watch out for this or you could get really confused.
TURBO Pascal in many places uses instruction sequences like:

<-- " ---> <---------- 12 -------> <---------- 13 -------> <--- 14--->
(LabeIName) (processor instruction) (instruction "rguments) (Comments)

• Using the source code you can fIX those "bugs" that preven
ted you from fully utilizing the product.

• Set those default parameters to what you want.
• Modify the program to include features that you (and

perhaps others) want to see.
• Learn how the programmer did those wonderful things.

Make your programs work just as well using these techniques.
• Make some money from your labor.

Because you have converted the program from machine
code to an ASCII file suitable for an assembler, you can now edit
the file making any changes you wish. Then you reassemble and
link (or load) the program. This new copy now functions the way
you want it to.

If one of your reasons for producing the source code was to
learn how the program functioned, then the printed listing is
probably the most important result. While the process of
disassembling already gave you great insight into the program
as a whole, now you will be able to study that particular aspect
that intrigued you (like just how does TURBO Pascal handle a
forward label reference when it is only a one pass compiler? Is it
really a one pass compiler??).

Another interesting, but often overlooked, use for the source
code is that other people may have similar interests to yours.
Maybe you could sell it? This is a sticky area because the source
code is composed of instructions whose order (ie, the executable
part of the program) is owned by the author, plus your added
comments and label names. There have been a few examples of
disassembled programs being published (for example the
Timex/Sinclair ROM) but these most likely required the con
sent of the original author.

Regarding your work, you would certainly be allowed to sell
your label names and comments but probably not the instruc
tions. After all if you sold the instructions then you are, in effect,
selling the program and would owe the author royalties. But all
is not lost as there is a way out of this mess.

If you consider that every line of the assembly source file
looks like this:

Making Use of the Generated Source Code
Now that you have generated the source code and it has

been documented more of less to your liking, what do you do
with it? Although you probably should have asked yourself this
before you started this project, here is a list of the major uses for
the source code to a program.

Initially when you disassemble this type of code sequence,
you may be tempted to think that the series of "INC A" instruc
tions are really data. After all it doesn't make much sense at fir
st. But as you uncover those locations where these instructions
are referenced, you soon discover what is going on and correct
your mistake.

There are plenty of other tricks you may run into and some
are even more obscure.

where each field could be absent, then you could extract the por
tions that you have created (*1 and 1/4) from the line and
eliminate the portions that the program author created (1/2 and
1/3), The extracted portions could be put into data files and sold.
Now in order for a customer to use this data (your label names

A,OAFH
$-1
A
A
AF

Address of general fi Ie 1/0.
Change INC into DEC for reading.
Execute and return through it.

ReadF i Ie: LD
ORG

WritaFi le:XOR
AND
PUSH

HL,FllelO
(HLl
(HLl

LD
INC
JP

12 The Computer Journal/Issue 1127

and comments). he will have to come up
with the instruction and argument fields
for each line. This means he must
already have the program. Since even a
rudimentary disassembler has no
trouble producing the processor instruc
tions for a program, you will have to
come up with a disassembler that knows
how to combine your label names and
comments with the disassembled in
structions. This is not a trivial task, but
its not that difficult either. What you
come up with is a program that can
reconstruct the soUrce code on the
customer's computer system.

In this way you would only be
distributing your label names and com
ments along with a simplistic
disaassembler that knows how to put the
pieces back together again. And, impor
tantly. the author is not cheated out of
any royalties that are due because the
user must already have a copy of the
program. Which hopefully was obtained
properly.

The results of this fancy foot work is
that the customer has to wait a short
while for the source code generator to
produce the final files. The generator for
TURBO Pascal takes about twenty
minutes to produce 21,000 lines of assem
bly code. Not a big inconvenience con
sidering the immensity of this task.

These knowledgable. highly
specialized disassemblers are what I call
Source Code Generators. C.C. Software
has these available for CP/M 2.2 ($45),
CP/M 3 ($75). and TURBO Pascal v 3
(CP/M, Z-BO) ($45), And more are in the
works.•

The Computer Journal/Issue 1127

SO Software. Inc.. maker of the original

CPfM-80 CLanguage Development

System. knows

Time is precious
So the compilation, linkage and execution
speeds of BOS Care the fastest available. even
(especiallyl) on floppy-based systems. Just ask
any userl With 15.000 -J- packages sold since
1979. there are lots of users .

New' Ed Ream's RED text editor has been
integrated Into the package. making BOS Ca
truly complet-e. self-contained Cdevelopment
system.

Powerful original features: COB symbolic
source-level debugger. fully customizable
library and run-time package (for convenient
ROM-ing of code), XMOOEM-compatible
telecommunications package. and other sample
applications.

National CUser's Group provides direct access
to the wealth of public-domain software written
in BOS C. Including text editors and formatters.
BSS·s. assemblers, Ccompliers. games and
much more.

Complete package price: $150.
All soft-sectored disk formats. plus Apple
CP/M. available off-the-shelf. Shipping: free. by
UPS. within USA for prepaid orders. Canada: $5.
Other: $25. VISA. MC. COD. rush orders accepted.

BO Software. Inc.
PaBox 2368
Cambridge MA 02238
617· 576 •3828

13

Feedback Control System Analysis
Using Root Locus Analysis and Feedback Loop Compensation

by Bert van den Berg, BV Engineering

Rearanging (3) gives us the answer for the closed loop transfer
function:

The composite LaPlace transfer function, H(s), of the feed
back system of Figure 1 can easily be calculated. If G(s) is the
LaPLace transfer function of the forward path and K(s) is the
transfer function of the feedback path, and the overall transfer
function H(s) is defined to be H(s) =Y(s)/X(s), then:

Closed loop feedback control systems are used to ensure
that an activity occurs as intended. All such systems contain a
forward block which performs an action and a feedback block
which measures the action and reports the results. The function
of the feedback loop is to reduce the error between the measured
and desired result to zero or some acceptable value near zero.
Figure 1shows a typical feedback control system in its simplest
form.

"

(l) LOCIPRO, SPP, and PDP, are Professional Engineering
Software products from BV Engineering, 2200 Business Way,
Suite 207, Riverside, CA 92501, phone (714) 781-0252

example of potential instability and undesirable response would
be if the driver of the automobile were drunk or had to rely on in
formation verbally transmitted to him by another observer.
With this in mind, it is important to have the capability to assess
a control loop's characteristics. In particular, one of the first
issues requiring resolution is that of loop stability. Since loop
stability, accuracy, and transient response are all related to
loop gain, the loop gains for which the loop remains stable are
another area of interest. The question of loop stability with
respect to loop gain arises because loop element gains may
change due to environment and loop accuracy is strongly affec
ted by loop gain.

When the issues related to loop stability have beel1 resolved,
the designer then turns to concerns regarding loop transient
response. This defines the loop response to a step change in in
put to the control system. One method for studying and predic
ting the behavior of closed loop systems is called the root locus
method. The root locus method attempts to calculate the roots of
the denominator of the closed loop transfer function, H(s), for
the control loop. With this method the transfer function is
determined in the LaPLace domain (or as a function of the com
plex variable, s). Next, the roots to the denominator of equation
(4) are determined as a function of loop gain. When the roots are
plotted in the s plane we can infer some characteristics about
stability and transient response.

Roots which lie in the right half of the s plane correspond to
an unstable system whose output to a step function input will
oscillate with continually increasing amplitude. Those roots
lying in the left half plane with complex pairs will exhibit a
response to a step input which may overshoot the step amplitude
but will settle to the commanded step value. The closer a com
plex root lies to the imaginary axis the quicker the system
response is expected to be. That is, the system will reach its
final value quickly. However, the overshoot in reaching the final
value may be substantial. The converse is also true. The closer a
complex root lies to the real axis, the slower its step response
becomes. The type of response for a system having roots located
at various points in the s plane is shown graphically in Figure 2.

We will now analyze a typical contrplloop, compute the root
locus of the system using the LOCIPRO(1) root locus program.
We will find that the loop is unstable. This behavior will have
been predicted from the system root locus by LOCIPRO. Alead
lag loop compensator is then added and the new locus of roots
for the compensated system computed. The new root locus
provides us with information as to the optimal loop gain and

(4)

(2)

(3)

Y(s)

K(s)

G(s)

Figure 1-Simplest Feedback Control Loop

X(s)

Y(s) = e*G(s)

H(s) = Y(s)/X(s) = G(s)/[1+ K(s)G(s)]

e= X(S) - K(s)*Y(s)

Y(s)= G(s)[X(S) - K(s)Y(s)]

Substituting (2) into (l) gives:

An example of such a control system is the driver of an
automobile. In the case of the driver, he uses the automobile
controls to maintain the vehicle on a desired path. The driver's
vision provides a means for sensing the actual motion while his
brain derives the error between the desired motion and the ac
tual motion. Deviations are corrected, the new path observed,
and a new estimate of the error between actual and desired
course is provided.

While feedback provides a means to reduce error by
measuring the activity, it can also create system instability,
cause overshoot, and exhibit undesirable transient response. An

14 The Computer Journal/Issue 1127

relative stability of the compensated system. SPP will be used
to verify that the response of the system is now acceptable. PDP
is used to make all the plots for these examples.

C... Sl.,e Ampliller MOIOf

1/5

Figure 2 - Typical System Responses

The stable platform control system shown in Figure 3 con
sists of a platform, an angular rate sensor, and a torque motor to
move the platform. In this system a desired rate is input to the
system, and the amplifiers feed a signal to the torque motor
which in turn causes the platform to rotate at a particular
angular rate. The actual rate is fed back to the control loop to
allow the loop to accurately follow the commanded rate.

Rate Gyro
1.3E-S 5'2 +UE-l 5 + 1

Figure 4- Loop Block Diagram

Open Loop Transfer Function Data

The transfer functions describing the loop elements of
Figure 4 are entered into the LOCIPRO program and the
program is used to compute the root locus as a function of gain.
The value of the gain. K. <block 1of figure 4) is allowed to vary
between the limits of 500 and 4000.

After data for the last transfer function block has been en
tered into LOCIPRO, the program lists all the data and requests
whether there is any need to edit the data. Once editing (if any)
has been completed. LOCIPRO will list the composite open loop
transfer function. The closed loop transfer functions may be
saved to data files for future use by LOCIPRO or the Signal
Processing Program <SPP). After the root locus has been com
puted, the pole-zero vs. gain data may be vectored to the
display, the printer, or to an ASCII data file. The ASCII data
files may be plotted using PDP, PCPLOT, PLOTPRO, or other
plotting routines.

The composite open loop transfer function for the system
described by figure 4 is computed by LOCIPRO and is listed
here:

Real Axis

Rate Sensor Numerator Coefficients· Ascending Powers of S

Denominator Coefficients· Ascending Powers of S

Primary lens

-
-

r~F~==:;;~:::::JlOPtica' Sensor

Torque Motor

Position Sensor

Exponent of
S

o

Exponent of
S

Coefficients

.100000E I

Coefficients

Figure 3 -Stable Platform Control Feedback System

o
1
2
3

.OOOOOOE 0

.100000E I

.440000E-2

.130000E-4

It is desirable to have as high a loop gain as possible in order
to maximize steady state ac,curacy of the closed loop. The
system requirements demand that the system settle to the
desired steady state final value within 0.1 seconds for a step in
put. Figure 4 shows the block diagram of the components of the
loop in the LaPlace domain. The loop elements describe the
characteristics of the gain stage. power amplifier, the torque
motor, platform inertia. rate sensor, etc.

We are now ready to perform an assesment of the stability
of the loop with respect to changing gains and have • choice of
three levels of resolution in choosing gain stepe. The LOCIPRO
program can be directed to choose low or high resolution steps
with the gain steps automatically selected by the program. The
user can also specify the number of steps manually. For this
example LOCIPRO was directed to compute a root locus for 70
gain steps for the stable platform problem. The gam K. was

The Computer Journal/Issue '27 15

specified to vary between 500 and 4000. The results are shown The data for the feedback system described by the transfer
plotted in the s plane of figure 5. functions of Figure 6 are now entered into the LOCIPRO

program and plotted using the Plotter Driver Program (PDP).
The results are shown in Figure 7.

Uncompensated Root Locus Compensated Peo: ~ccus600
I

/
JOO

I I /,- I

J60 I i
I lB. I

r
U1 I

t- co
y I -<{ I/O Xr <{ '">-

l
'- I >-

'" '-c '"- .\/0
~ C

o· - ...,
'" ~

01
E '1J

E

·360 L
~

,
I -H~O

~ \ ~
·too I ! ~ I ..~

·1200 . "", JOO J()O -300 ! ; I

Real
-400 .J()<l ·200 ·1~C :oc

AXIS il'a111l
:leal AXlS

Figure 5 - Root Locus for Uncompensated Stable Platform Figure 7- Root Locus of Compensated System

Figure 6- Compensated Loop Block Diagram

A number of different things can be seen from the data
presented in figure 5. It is immediately obvious that the system
is unstable for all values of gain in the range of 500 to 4000. There
are two poles in the right-half plane for all values of gain. These
right-half plane poles start at about 'J:l ± 300i for a gain of 500
and migrate to 200 ± 600i for a gain of 4000. There is also a pole
which starts at -400 +Oi at a gain of 500 and migrates to -750
+Oi at a gain of 4000. Since this third pole li~s entirely in the left
half plane it does not worry us as far as stability is concerned.

This system might be stable for loop gains below 500 but we
would lose the benefit of accuracy at lower loop gains. A gain of
about 2000 would be desirable and thus it will be necessary to
"compensate" the loop to improve the stability margin. The
design of loop compensators in general is a topic worthy of an
article in itself. We cannot do such a topic justice in a few words,
and we will not try to do so here. Let it suffice that many loop
compensators are just "lead-lag" networks which improve
phase margin for the loop by delaying the point at which the
poles move into the right-half plane.

A lead-lag compensator for the loop described by Figure 4
was designed to stabilize the loop. This loop compensator having
a transfer function C(s) =[0.1S + 1]/S is added to the loop
giving us the block diagram shown in Figure 6.

Note that the plot of Figure 7 is made on a different scale as
that of Figure 5. The loop compensator has "pulled" the poles
closer to the origin. The additional "zero" at -10 +Oi results in
a drastically different starting point for the closed loop poles. As
the gain K is increased, the poles migrate over a different path
as before and stay much closer to the origin.

The plot of Figure 7 shows that the compensated loop is
stable for loop gain of 500 and unstable for a loop gain of 4000.
Printing the LOCIPRO data in a tabular format, it is easy to see
that a complex pair of poles migrate into the right-half plane at
a loop gain of 3286. At a loop gain of 2000 the poles are located at
-33 ± 235i. Therefore the loop should be stable at a gain of 2000.
This much gain should provide the desired accuracy. Having the
roots near the imaginary axis predicts a fast response. We only
have to see if the transient response meets the 0.1 second set- .
Uing time requirement.

We use the LOCIPRO program to save the closed loop tran
sfer function for the compensated loop and then use the Signal
Processing Program (SPP) to compute the step response. The
time domain waveform we wish to compute the response for is
generated within SPP (or some other program>. Although any
user-defined waveshape could have been used, in this case a rec
tangular waveform was selected. The closed loop transfer fun
ction file created by LOCIPRO is read into SPP and the time
domain response computed. SPP performs this operation in 35
seconds by using Fast Fourier Transform (FFT) techniques.

SPP takes the rectangular wave and performs a 512 point
FFT on the signal to determine the constituent frequencies, and

. the magnitude and phase of each of these frequencies. The
resulting frequency components are called the signals "spec
tra." The resulting complex spectra is then "filtered" through
the transfer function one frequency at a time. The transfer fun
ction modifies each frequency component of the original time
domain waveform. The resulting frequency spectra is then con
verted back into the time domain by performing an inverse
FFT. The spectra multiplication technique in the frequency
domain is identical to convolution in the time domain, where the

1/5
01 5 + I

5

1.3E-S 5'2 +4.4E-3 5 + I

2000

18 The Computer Journal/Issue 1127

References :

Dorf, R.C., (967), Modem Control Systems (Addison
Wesley)Cannon, R.H. Jr. (967), Dynamics of Pkysica1 Systems
(McGraw-Hill)Melsa, J.L., and Jones, S.K., (973) Computer
Programs for Computational Assistance in the Study of Linear
Control Theory (McGraw-Hill) •

The platform output closely tracks the desired input and set·
tles to a steady-state rate within the required 0.1 seconds. With a
loop gain of 2000 this "tight"'loop should track the commanded
rate quit closely. The gain margin for the loop is 2O-1.og
(3286/2000) =4.3 dB, not high - but acceptable under most con
ditions.

This concludes the discussion of root locus techniques and
the example using the LOCIPRO program. Several books which
are good reading should you desire a more in-depth knowlege of
root locus techniques are listed below:

ReSDOIlse

r~
'-------11 lao ~I 01

l en

TranSIent

l !iiv ----------: .• I
•• f J \,(.r----------- -.•

3')0

1.00 r

=ornpensated

-W
:::J -lao
Cl.
c......

~
~ -1.:0 ;.-1------'

01 I

U; L

rectangular input signal is "convolved" with the impulse
response of the closed loop transfer function. Spectra
multiplication is far faster than convolution and it takes SPP
only 35 seconds to perform all three operations (FFT·Filter·
IFFT). The results of the transient; analysis of the compensated
system is shown in Figure 8.

Time (Seconds)

-7.00
0.000

- '-'___ • :lJtOut

0.100 0.200 0.300 0.<00
-loao

0.500

Figure 8 -Transient Response of Stable Platform

-------- Turbo Pasca'· Advanced Applications -------

Abook with

ADVANCED TOPICS in' TURBO PASCAL

Table of Contents

o Optimization Techniques
o Using the DOS Background Print Spooler
o System Level Tools
o Creating Libraries
o Exploiting Command Line Arguments
o Using aBinary Search Tree
o Techniques for Data Compression
o Claiming CP/M Memory
o Break the 64K Data Limit
o Linked Lists for Data Structuring
o Interrupts from Turbo Pascal
o Calling the DOS Command Processor
o Bit Mapped Graphics
o Teaching an Old Screen New Tricks
o Implementing 2D Core Graphics
o Build aSubset Pascal Compiler

Order TurlJo "'.cal· Adranced Application. for $19.95 post
paid in USA; with MS DOS disk, $32.95. Add $3.50 for surface ship
ment to canada or other countries; air rates on request. Order from
Rockllnd Publishing, Inc., 190 Sullivan, Suite 103, Columbia Falls,
MT. 59912. Visa or Mastercard accepted. Phone orders, call
(406) 257-9119. F.... Infonllltlon II mlllble. Oealer inquiries
welcomed.

.....pac~d with good
advanced technical information. ..

The Computer Journal/Issue /#27 17

The C Column
l

A Graphics Primitive Package

by Donald Howes

It's now December 18, and I'm frantically typing this
column so I can leave on the 20th to go to Canada for Christmas.
By the time you read this, the holiday season will have passed. I
hope that it has been a happy one for all. Hopefully, I won't still
be chained to this desk.

In this column, I'll start to present code for a graphics
primitive package for the IBM PC. While these particular
primitives are for that machine, it shouldn't be hard to adapt the
code to run on other machines, either MS-DOS based or other
operating systems. Once the primitives are complete (which
will be this and the next column) we can take a stab at
developing some applications using them.

By hiding the machine dependent code at the lowest level, it
will free us to develop the important things in a more general
and machine independent fashion, aiding in the porting of our
software from one system to another. This time, I'll present
code for the most basic parts of the- primitive package. These
routines initialize and terminate the application, prOVide move
and draw routines, and the ability to activate a pixel and clip a
line (see Listings 1and 2) .

Getting Things Started (and Stopped)
To start things off, it is necessary to mitialize the graphics

application. The function graLinit() does this, setting the
current x and y location, the maximum and minimum x and y
coordinate values, getting the display mode parameters
operative when the graphics application started and then setting
the system into high resolution graphics mode.

I must admit, I've cheated a bit on this function, since I've
hard-wired the initialization routine for an Enhanced Graphics
Adapter (EGAJ. For those not using an IBM or compatible
system, this card provides higher resolution and more colors in
both the foreground and background than the Color Graphics
Adapter (a palette of 16/64J. It would be possible to write an
initialization routine that could check whether the system had a
CGA or EGA video card, but there are differences between the
cards that go beyond resolution that would complicate some of
the other routines (I also don't have a CGAcard to test the code I
would writeJ.

The int86() function accesses the DOS interrupts and is used
here to access interrupt 10H <ROM BIOS video interrupt). Users
of non-IBM systems will have to find the appropriate means to
do the analogous on their machines. The first call finds out what
the video mode and video page are when the application starts,
so that the same environment can be restored on exit. The
second call sets the video card into the EGA high resolution
640 x 350 mode.

Once the application is complete, the function graf_term()
restores the original video mode and video page using the in
formation discovered in graL_init(). Resetting the video mode
will automatically set the page to 0, so, if a video page other than
the first was being used, it has to be set independently.

18

Where Do We Go From Here?
Now that we know how to start and stop, what do we do while

we're there? Let's start with the function for setting a pixel,
do_pixel (). This particular routine is very straight forward,
being a single call to int86(). The parameters passed are the x,y
coordinate of the pixel and the color you wish it to be (Hdefines
for valid colors are given in graph.h, Listing 1).

Equally simple is the move() function, which updates the
value of cur-x and cur-y to the x and y coordinates passed to
it. Note that both the move() function and the draw() function
I'll be talking about in a minute are absolute routines. That is,
the x,y value passed is a screen coordinate, not an offset. These
functions can be augmented by relative ones (which do use an
offset) very easily. Using the move() function as an example, it
would be:

void move-l'el(xoff,yoff)
int xoff, yoff;
{

intx, y;
x =cur-x + (xoff);
y =cur-y + (yoff);
move(x,y);

A function draw-l'elO would be identical, except calling
draw(), instead of move().

I'll discuss draw() and clip() at the same time, since clip()
is used by draw() to clip lines to the screen. The draw() function
uses the Bresenham line algorithm to draw a line from the
current x,y location to that specified. This algorithm is quick,
since it uses only integer arithmetic to calculate which pixels
are part of the line and avoids the "stair step" effect which
plagues other integer based line drawing routines. An extended
discussion of this routine can be found in Foley and Van Dam,
pg. 433-436 (see References section below).

The clip() function is used to clip a line segment to a win
dow, so that no time is wasted in calculating pixel positions
which fall outside the window and are not displayed. The fun
ction uses the Cohen-Sutherland clipping algorithm (see
Newman and Sproull, pg. 65-6'7) to calculate the length of the line
which is visible within the window (in this case, the window is
the same as the physical screen, the viewport). This clipping is
an iterative process, where the line is successively truncated
until both endpoints of the line are within the window. The fun
ction code() returns the 4-byte values which are used to deter
mine when the line is within the window. In addition, the clip()
function tests for the situation where line clipping results in a
line where both end points are on the same side of the window
and are external to it. In this case, the line cannot be displayed
and the function returns.

The Computer Journal/Issue 1127

Li~ting 1: Header File For Graphics Primitive~

f* defines for foreground colors *f

f* header file for graphic primitives *f

<~tdlib.h>

<~tdio.h>

<dos.h>
lie minimum vCJJLJt.'~ 1 tHO X lind y *'
1* IIklximum y value *'
j·-nwximum x value */

f* get current diHplay mude */
/* IWH videu call lUll *f
/* munit(J[page tu fcticl Lu *'
1* munitur mode tu r~st:l'L(J */

'* Set CUrrClll x.y lucatiull *'

illc...:g.h.ah ~ Uxutj
i nllib (Ux I U, &i nrt:g .tOout re~) ;
page - outreg.h.bh;
mude ; outreg.h.al;

cur_x;;;. cUf3 ;;;. U;

x lUili :;:;. y min" Uj
y --max ~ j{');

x_max ; bj~;

*/
void ~ral_init()

C Column Ll Li~tin~ L

f,o unions for intijb() ,of

f,o current x. y coordinate~ ,of
f* max and min screen values ,of

f* video page and mode at startup ,of

#include
#include
#include

1nt cur x, CUC-Yj

int x max. x min. y max. y min;
int p;ge, mode; - -

~tatic union REGS inreg, out reg;

.....
=r
4D

~
3
'0
C

Ii..
C
o
c
3
!!.

ii'
(jI
C
4D

~

void graf_init(). graf_term(), doyixel(), move(). drawl);
int cllp(), code();

inreg.h.all ;;;. U;
illreg.tl.al ;;;. mode;
inttib(Ux!U.&inrcg.&outr"g);

inreg.h.ah ; U;
inr,,~.h.al ; UxlU;
inttib(UxlU.&inr"g.tOoutreg);
/* "nd 01 graf_init() *f

vvoid gral t"rm()
I

/* r"Het the mode */

f* Het EGA high reH mode *f
f* b4U x j~U *f

f* if page waHn't the firHt (U). reHet *f

r~set the system to the way it was befure tlie
initialization cal!.

reset the system.

if (pag,,)
I

description -

~raf t"rm -/*

*f

U
I
2
3
4
5
b
1
II
')

IU
11
12
13
14
15

BLACK
IILUE
GREEN
CYAN
REU
MAGENTA
BROWN
WHiTE
GREY
LIILUE
LGREEN
LCYAN
PINK
LMAGENTA
YELLOW
IIWHlTE

'def i ne
'define
'define
'define
'define
'define
'define
'define
'define
'define
'define
'define
'define
'def ine
'define
'define

Listing 2: Graphics Primitives.

description - sets the screen to b40x35U mode and inltialize~ variables •
Also saves previous parameterH for restocation.

/****••**•••••••***.**••• *.********

* ** graph.c : graphics primitives for the IBM PC. *
*

- turnH the given pixel to the Hpecified color.

- does a pixel

I
/* "nd of graf term() */

deHcription

doyixel

inreg.h.ah ; 5; f* select diHplay page */
inreg.h.al ; page;
inttib(UxlU.&inreg,&outreg);

/* Het the new color uHing inttib() ,of

inr~g.h.ah = Uxc;
inr~g.la.al ~ color;
illr~g.x.(;X .= Xi
illrcg.x.dx ::; y;
inttib(Ux!U,tOinreg,&outreg);
/* end oj uoyixcl() ,of

void do-pixcl(x.y,color)
int x. Y. color;

f,o

,of

*
*

*

*

*

*

*

"graph.h"

- initializes the screen

Note: most of these functions use 111M PC Video ROM BIUS callH to
operate and are specific to the IIIH PC and close compatibles.

Copyright (C) l')ijb Donald Howes
All RIghts Reserved.

This program may be copied for personal. non-commercial use only,
prOVided that the copyright notice is included in all copies.

Uinclude

*
*
*
*
*
*
*
*
_**** ••k. __** ••• *••••• /

f* graf_init

...
II»

description - ciips a line to a viewport using the Cohen/Sutherland
algorithm.

~ I C Column 27 Listing 2

/* code - used by Cohen/Sutherland clipping algorithm.

*/

/* clip - clips a line.

it (x2 < x_min)
{

y2 += dy * (x_min - x2) / dx;
x2 = x_min;

I
e Isc 1f (x2) x_max)

y2 += dy * (x_max - x2) / dx;
xl :0= x_max;

I
else 1f (y2 < y_min)

x2 += dx * (y_min - y2) / dy;
y2 = y_min;

I
else if (y2) y_max)

x2 += dx * (y_max - y2) / dy;
y2 = y_max;

/* mOOVe - performs move
description - performs a move (does not draw) and resets the values

for cur x and cur-y.

cur_x :;;z Xi
cur'y = y;
/* end of move() */

I
move(xl,yl);
/* end of clip() */

void move(x,yJ
lnt x I Y;
(

*/

(y>y_max);(y<y_min)«1

provides the four bit code needed to determine where
the line segment falls in relation to a viewport.

while (el I c2)
(

1f (el 60 el)
return;

dx - x2 - xl;
dy - y2 - yl;
1f (el)
(

void move();
int code();
int cI - code(xl,yl);
int c2 - code(x2,y2);
int dx, dy;

return(x<x min)«3 I (x>x max)«2
/* end of code() */ -

description

int code(x.y)
int x. y;
(

int cl1p(xl.yl.x2.y2)
int xl, yl, x2. y2;
(

*/

if (xl < x_min)
(

yl +- dy * (x_min - xl) / dx;
}{1 • x_min;

I
else if (xl) x_max)
(

=1
yl +- dy * (x_max - xl) / dx;
xl - x_max;

CD }

fl else if (yl < y_min)
3 (
'0 xl +- dx * (y_min - yl) / dy;c
Ci yl - y_min;
~

c.. }
0 else if (yl > y_max)c

i (
xl +- dx * (y_max - yl) / dy;- yl - y_max;iii

CIt
c }CD

~ else
..... (

/* draw - draws a line using the Bresenham algorithm.

description - draws a line from the current location to the location
referenced by (x2,y2). It also updates cur_x and cur-y.

*/

void draw(x2,y2,color)
int x2,y2,color;
(

void do-pixel(), move();
int dx, dy, incrl, incr2, incr3, d, x. xl. Y. yl, xend. yend;

clip(cur_x, cur-y,x2.y2);

xl • cur_x;
yl = cur-y;

dx = abs(x2-xl);
dy = abs(y2-yl);

.. .. ,. .. ~ lit

}
else
(

x • xl;
Y • yl;
xend • x2;
dy - y2 - yl;

X :I x2;
y = y2;
x~nd a xl;
dy-y2-yl;

/* absolute value of slope Is < I */
/* start at point with small~r x eo-ord. */

if (d>< <. U)

d +. inerl;
elti~

cls~

y • yl;
x = xl;
yend • y2;

Y Hi
it (d)a U)

I

d>< • ><2 - ><1;
I
d • (d><)= U) ~ inerl - dy : inerl + dy;
inerl • d>< « I;
inerL • (d><-dy) « I;
inerl • (d><+dy) « I;
do_yi><el(><,y.eolor);
while (y < yend)
I

inerl + dx;
}
d - (dy >- U) ? inerl - dx
inerl - dy « I;
iner2 - (dy-dx) « I;
iner3 - (dy+dx) « I;

C Column 27 Listing 2

if (dy <- dx)
(

if (x: > x2)
(

-f;;r
CD

~
3

't:l
c::-CD...
C
o
c::
3
!!.
;;
loll
c::
CD...
~

do-pixel(x,y,eolor);

whUe (>< < xend)
I

x ++i
if (d >- U)
I

if (dy <- U)
d +- inerl;

"lse
I

y ++;
d += iner2;

}
else

/* negative or z"ro slop" "'

/* positive slope */

x ++;
d +. inerL;

I
else

it (d><)= U)

d +. inerl;
else

><
d +. inerl;

I
do-pi><"I(><,y,eolor);

if (dy >- U)
d +- inerl;

else
(

move(><2.y2);
/* end of draw() */

y --;
d +- ined;

I
do-pixel(x.y,eolor);

}
else
(

if (yl) y2)
I

N
~

y • y2;
x = XL;
y"nd • yl;
dx • K1 - ><2;

<C Column continued)

Graphics R~f~rences

This has been a rapid introduction to graphics. For those
who wish to delve a little deeper into the subject or want to try
their hand at developing their own routines, here are some
references you will find helpful.

Bruce A Artwick, 1984, "Applied Concepts in Microcom
puter Graphics". Prentice-Hall, Inc., Englewood Cliffs.

J.D. Foley and A. Van Dam, 1982, "Fundamentals of In
teractive Computer Graphics", Addison-Wesley Publishing
Company. Reading.

Steve Harrington, 1983, "Computer Graphics : A Program
ming Approach". McGraw-Hill Book Company, New York.

William M. Newman and Robert F. Sproull, 1979, "Prin
ciples of Interactive Computer Graphics", McGraw-Hill Book
Company. New York.

That's it for this time. The next column will finish up the
primitive package and we can move on to some interesting ap
plications.•

Surplus Parts
Resource

Here's a catalog any serious computer tinkerer needs. It's a
treasure-trove of stepper motors, gear motors, bearings, gears,
power supplies, lab items, parts and pieces of mechanical
and electrical assemblies, science doo-dads, goofy things,
plus project boxes, lamps, lights, switches, computer furni
ture, and stuff you might have never realized you needed.

All at deep discounts cause they are surplus!
Published every couple of months, and consecutive issues
are completely different. Send $1.00 for next th ree issues.
JERRYCO, INC. 601 Linden Place, Evanston,llIinois 60202

'I

22 The Computer Journal/Issue '27

The Hitachi HD64180
New Life for 8-bit Systems

by Jon Schneider

This article was written with the intent of giving those un
familiar with Hitachi's new 8 bit microprocessor an understan
ding of its advantages over the Zilog Z-80. Also, through the use
of some actual 64180 bios level code, an understanding of how to
utilize some of its advanced features.

The Hitachi 64180 is a highly integrated 8 bit CMOS based
micro-processor designed to be fully compatible with the large
base of Z-80 software already in existence. In addition to an
enhanced instruction set and increased throughput, the chip
performs many of the functions that previously required a large
number of support chips. A few of those functions are:

• On chip MMU, supporting up to 512 bytes of linear address
space

• Two channel DMA
• Programmable RAM refresh rates
• Programmable memory and I/O wait states
• Two fully programmable 16 bit reload timers
• Two full duplex asynchronous serial ports
• One clocked serial I/O port
• Interrupt controller (can use reload timers to generate in

terrupts)
• Ability to relocate on-chip I/O addresses

Many of the features of the chip serve to make the design
and production of a system easier and cheaper for the manufac
turer, and will be transparent to the applications level
programmer. However, if you are a systems level programmer,
or desire to use any of the memory above 64k in any ap
plications, then you will need to become familiar with the
methods used to control the various on-chip functions.

In addition to the on-chip ports used to control the additional
integrated hardware, there is an extended instruction set. Many
of the new instructions' are directly related to on-chip port I/O,
and will be of no real use other than to avoid I/O address conflic
ts between the on-chip and external ports, or to make sure that
the high order bits of the address bus are all 0 (if ANYTHING is
on the high 8 bits of the address bus, the Hitachi's ports won't be
accessed).

There are several new instructions that will be of use to any
assembly level programmer. They are:

• MLT - multiply two 8 bit values, with 16 bit result
• TSTIO - AND the contents of a specified I/O port with the

accumulator
• TST (g) - AND specified register and accumulator
• TST (m) - AND immediate data and accumulator
• TST (HL) - AND memory and accumulator

All of the TST instructions are non-destructive on the ac
cumulator, eliminating the need to save and/or reload the ac-

The Computer Journal/Issue 1127

cumulator after the AND operation. The flags are set-reset in
the PSW as would be expected for any other AND operation.
MLT will be covered in more detail later in this article.

The 64180 uses 64 I/O addresses to control its internal ports,
and allows relocation of those addresses to any 64 byte boundary
within the first 256 bytes of the 64k I/O address space. This was
done to facilitate the add-on of the Hitachi processor to existing
hardware without causing I/O address conflicts.

Due to the large number of internal ports, I use an include
file in all of my 64180 work, and refer to the ports by their names
as shown in the Hitachi manual. This file is shown in Listing 1,
and assumes that the ports start at address o.

The addition of a few new instructions would hardly qualify
the Hitachi as a marked improvement over the venerable ZSO,
and other than than making the design of a new system easier, it
wouldn't be generating the interest that it is without something
to make it much more powerful than the current 8 bit workhor
se.

That feature is its ability to address up to 512k bytes of
memory in a linear fashion. Due to the lack of more than 16 bits
of addressing for the programmer, you are still limited to 64k of
memory addressable at one time, but developers can now code
programs to utilize memory past 64k in a uniform manner,
much like PC-DOS programmers now do.

li you are not familiar with how the IBM PC and other 8088
based computers address memory, you may be surprised to
discover that they have been working within the same limitation
of a 64k segmented architecture. The main difference is that the
8088 based systems don't actually have to switch memory in and
out of one 64k segment, but have to use a segment register in ad
dition to a 16 bit address to specify an absolute address.

You may have noticed that I mentioned 512k bytes of
LINEAR address space for the Hitachi, and then turned right
around and said that the memory above 64k had to be switched
in and out of the 64k address space the programmer uses. That is
not as contradictory as it may seem.

The address bus on the Hitachi is actually 19 bits wide,
allowing the processor direct linear access to any address
within 512k bytes. It is the programmer that has to work within
the limits of addressing memory with only 16 bits. Even that
isn't entirely accurate, as some operations, such as DMA, allow
the programmer to specify the absolute addresses within the
512k byte address space.

Since addressing the 64180's extra memory is one of the
more confusing aspects of programming the chip, I will cover it
in detail. The manual as supplied by Hitachi is somewhat con
fusing and terse, to say the least.

The 64k of memory that is accessible at anyone time is
divided into three separate areas called Common Area 0, Com
mon Area I, and the Bank Area. How 512k bytes of physical
memory is mapped into a logical 64K of address space is deter-

23

j ----------------------------

; ------------------------

HD64180 Ports

; Refresh Control Register

; REFRESH Control Reg36hequ

; Programmable Reload Timer (PRTl
; -------------------------------
tmdrOI equ Och PRT Timer Data Reg Chnl 0 Low
tmdrOh equ Odh PRT Timer Data Reg Chnl 0 High
rldrOI equ Oeh PRT Timer Reload Reg Chnl o Low
rldrOh equ Ofh PRT Timer Reload Reg Chnl o High
tcr equ 10h PRT Timer Control Reg
tmdr11 equ 14h PRT Timer Data Reg Chnl 1 Low
tmdrlh equ l'jh PRT Timer Data Reg Chnl 1 High
r Idr11 equ 16h PRT Timer Reload Reg Chnl 1 Low
rldrlh equ 17h PRT Timer Reload Reg Chnl 1 High

; DMA Controller (DMAC)

cntlaO equ 0 ASCI Control Reg A Chnl 0
cntla1 equ 1 ASCI Control Reg A Chnl 1
cntlbO equ 2 ASCI Control Reg B Chnl 0
cntlbl equ 3 ASCI Control Reg B Chnl 1
statO equ 4 ASCI Status Reg Chnl 0
statl equ 5 ASCI Status Reg Chnl 1
tdrO equ 6 ASCI Transmit Data Reg Chnl 0
tdrl equ 7 ASCI Transmit Data Reg Chnl 1
rdrO equ 8 ASCI Receive Data Reg Chnl 0
rdrl equ 9 ASCI Receive Data Reg Chnl 1

cbr equ 38h ~U Common Base Reg
bbr equ 39h MMU Bank Base Reg
cbar equ 3ah MMU Common/Bank Area Reg

I/O Control Register

rcr

; Memory Management Unit (MMU)

Asynchronous Serial Communication Interface (ASCI)

; --
cntr equ Oah ; CSI/O Control Reg
trdr equ Obh ; CSI/O Transmit/Receive Data Reg

; Clocked Serial Input/Output Port (CSI/O)

; ---------------------------
il equ 33h ; INTERRUPT Vector Low Reg
itc equ 34h ; INT/TRAP Control Reg

Listing 1

j ---------------------
sarOI equ 20h DMAC Source Address Reg Chnl 0 Low
sarOh equ 21h DMAC Source Address Reg Chnl 0 High
sarOb equ 22h DMAC Source Address Reg Chnl 0 Bank
darOI equ 23h DMAC Dest Address Reg Chnl 0 Low

'darOh equ 24h DMAC Dest Address Reg Chnl 0 High
darOb equ 25h DMAC Dest Address Reg Chnl 0 Bank
bcrOI equ 26h DMAC Byte Count Reg Chnl 0 Low
bcrOh equ 27h DMAC Byte Count Reg Chnl 0 High
marl I equ 28h DMAC Memory Address Reg Chnl 1 Low
marlh equ 29h DMAC Memory Address Reg Chnl 1 High
marlb equ 2ah DMAC Memory Address Reg Chnl 1 Bank
iar! I equ 2bh DMAC I/O Address Reg Chnl 1 Low
iarlh equ 2ch DMAC I/O Address Reg Chnl 1 High
bcrll equ 2eh DMAC Byte Count Reg Chnl 1 Low
bcrlh equ 2fh DMAC Byte Count Reg Chnl 1 High
dstat equ 30h DMAC Status Reg
dmode equ 31h DMAC Mode Reg
dcntl equ 32h DMAC Control Reg
; Interrupt Control Registers

A World of
Difference!

• A total software environment: custom
drivers for printer. video and kayboard
improve speed and flexibility. (New TRS
80 M.4 version. tool)

• Common SYS format gives you a big
395K (195K single-sided) per disk, plus a
boot track)

• Common wordset (7~Standardplus
MMSFORTH extensions) on all sup
ported computers.

• Common and powerful applications pro
grams available (most with MMSFORTH
source code) so you can use them corn
patibly (with the same data disks) acrosa
all supported computers.

• Very fast compile speeds and advanced
program development environment.

• A fantastic full-screen Forth Editor.
Auto-Find (or -Replace) any word (for
ward or back), compare or Pairs-Edit
any two ranges of blocks, much more.

• Temporary dictionary areas.
• QUANs. VECTs, vectored 1/0, and many

more of the latest high-performance
Forth constructs.

• Manual and demo programs are bigger
and better than ever!

• Same thorough support: Users Newslet
ter, User Groups worldwide. telephOne
tips. Full consulting services.

• Personal Licensing (one person on one
computer) is standard. Corporate Site
Licensing and Bulk Distribution licens
ing available to professional users.

FOR TR8-80 MODELS 1, 3, 4, 4P
IBM PCIXT, ATIT 8300, ETC.

The MMSFORTH
System.

Compare.

The total software environment for
IBM PC/XT, TRS-80 Model 1. 3, 4
and close friends.
-Personal License (required):
~VU"-DIIII tl7UI(llIS-IO_,_-..... DOel.'__·1

-Personal License (additional modules):
FOIlTHCOII c:ommunoc:alion modUle . . . • S...
UTtUTIES ...
GAMES............... ...
!llI'IJlT-2 upert.....
DATAHANDL!JI 51.15
DATAHAHDLER~UI (PC only, 12llK 1IIq.) ...
FOIlTHWRI11!_~

-Corporate Site License
Extensions 1roIn tl,llllll

-Bulk Distribution _S5OlII5O.....
-Some recommended Forth books:

PORTH: ATOT I REF. 1-_I S 1&.15
~JNG FORTH 1-on _niquel . .. 1&.15
STARTING FOR1M (popuIIr text) •••.. 1&.15

liIllppingIlIan " tax extra. No retuma on soItwaIe.
AsIc your dealer to show you the world of

....SFORTH. or request our free brochure.

m!MJ5SFORTH

cr equ 3fh I/O Control Reg
MILLER MICROCOMPUTER SERVICES
11 L8k. Shore Roed. Ndck, MA 01710

(117) 153-4138

The Computer Journal/Issue 1127

SEYERAL POSSIBLE CONFIGURATIONS OF MEM)RY AS DEFINED BY CBAR

""'U Conmon/Bank Area Register (CBAR : I/O Address = 3AHI

SCSI/IOP" -~ connectIOn of
~ STO ous onc1dINIl/O
interfaces(~ a,otM. -.
display, power conlTOI. eII:.)

EXPANSION/116" - odds tlve key
optionS to I.Jltle Board/ 186

• 512J<R.M\
• 8087 co-processo<
• Battery-bocJ<ed ROlli Time Clock

• 2 RS2321422 svnc'async senal
parts

• I/O expo"",," ous

• Onty 5.75 x 7.75 inches, mounts
dlreetfy to a 5·1/4" dISk drIVe

• Power Requirement· 5'IDC at 1 2SA;
+12"IDC at05A; On board -12V
converter

• SCSI/PlUS·" mUlti-master I/O
expansion bus

• Software Included:
• PC-DOS compatible ROM-BIOS boots

DOS 2.x and 3.x
• fWd DIsk support

YIDIO IWoI. EMUlATOR~ __

use of software that wntes to
display controller ''VIDEO R.M\"

PAOJECf 1ClAItD/116'" - odds 25
SQuare !nches of Wire """"'50
proto~ arOll WIth buffered and
pre-decodf:d 80186 bus Interface

for I.JltIf: Board/' 86

OPTIONS

Little Board/186™ •••• $495
High Perfonnance, Low Cost PC-DOS Engine

800tIIBM PC·DOS

r----t (not Indudcd}c_. ""'__ _,
l----.J .~-~ ~ ':Y"

• Three times the COMPUTING POWEll ot
aPC

• Data and File Compatible WIth IBM PC,
runs"MS-DOS genenc" programs

• 8 MHz 80186 CPU, DMA,
Counter/Timers, 128/512K RAM zero
WOlt states, 16-128K EPROM

• Mml/MJcrO Floppy Controlle-
(1-4 Dmes, SinglelDouble DellSlly,
1-2 SIded, 40/80 track)

• 2 RS232C Senal Ports (SO -38,400
baud), , CentronIcs Pnnter Port

C:Vrrmon
A.rea 1

Corrmon
Area 0

Comnon
Area 1

Figure 1

COlT'mOn
Area 1

Bank
Are~Convnon

Area 0

COITII'IOn
Area 1

Bank
Area

BA3 - BAD (bits 3-0)
BA specl f ies the start "ddress (on 4K byte boundaries) for
the B"nk Are". THIS ALSO DETERMINES THE LAST ADDRESS OF THE
CQMolON AREA O. After a h"rdw"re reset all of the BA bits are
set to O.

bit 7 6 5 4 3 2 I 0
CA3 CA2 CAl CAD BA3 BA2 BAI BAD

CA3 - CAD (bits 7-4)
CA specifies the start address (on 4K byte boundaries) for
Convnon Are" 1. TH I S ALSO DETERMI NES THE LAST ADDRESS OF THE
BANK AREA. After" h"rdw"re reset all of the CA bits are set
to 1.

Let's actually set up the CBAR register for the following
memory map, which is the same map as used in the RAM disk
drive that I will show later in this article.

As you can see in Figure 1, the starting and ending ad
dresses for the three segments WITHIN the 64k logical address
space have all been set (although I didn't show the actual ad
dresses), and whether or not a particular segment will even be
used is also determined.

Common Area 0, if used, MUST always start at logical and
physical address .OOסס The Bank Area must start at either the
end of Common Area 0, if it was used, or at logical address O.
Common Area 1 must start at the end of the Bank Area, if used,
or the end of Common Area 0, if it was used (and the Bank Area
was not used), or at address O.

Both the Bank Area and Common Area 1serve as areas for
the actual switching of physical memory into the logical address
space. All of the areas must start on a 4k physical address boun
dary.

Now that you have an understanding of what the 3segments
are, lets see how the CBAR register determines the actual
location of the segments.

mined by how three of the 64180's internal registers are set up.
The first register that needs to be set up is the CBAR

register (Common Bank Area Register), It determines which of
the three logical partitions will be used, and where they will be
located within the 64k of logical ad~ess space.

/;IVFI=E:I
COMPUTERS. INCORPORATED

67 E8t EwIIIyn A.... 0 Ml:luneMl VIew, CA 94041 0 (4t 51
1UIX 49403010 FAX (415) 961-t04t

MEMORY Logical Address

FFFFH
Convnon Are~ 1 32K

------------------- BOOOH
7FFFH

B"nk Area 32K

------------------- OOOOH

-.FACTOflW., SA, 4Hl018
TlX 1lI!408AIIS1WlAlI<SP
MICIlOCOM'lJ1ERS, (613) 5OlKl61l8,
TlX 36587 _ CENl1l£ ELECT1IONlQUE

L£MP£REIJR, (041) ~5-41, TlX 42621
-. C~COMI'UTADORES

LTDA, (41) 2611-1939, TlX 416132 CAMAIlAz
TJll.M, (604) 438-9012-. DAI'BT,

(03) 66 20 20, TlX 43SSlI we.,.
SYSTEMS LTD.. 02'96 3~ " 1'\.l IJ1417
--. SYMY£T1lI(CIY lS64-'I&S-m
TlX 121394~~ OWl.
(1) 4502-1800, TlX billll'l)-. AlPHA
~,L1O" :031 ~,~ 'l.J<)41667
_ASAl<TA,OI ~~iO.l\)<13702
USA: CONTACT"'-'C~ 0<.-

1BMfl.... Cora ':)1"" ccrp,.

The Computer Journal/Issue 1127

Now, to switch the physical addressed memory '40000h to
47FFFh' out of the bottom 32k of logical address space, and
switch the next 32k block from '48000h to 4FFFFh' into the same
logical address space, just load BBR with 48h.

The BBR register is used in exactly the same manner, and
since Common Area 0 always starts at physical address 0, there
is no need for a register for its mapping. A few examples may
help to clarify all three registers usage.

"CBAR . 80h CBR = OOh BBR = 40h

Io£fo()RY Logical Address Physical Address

FFFFh OFFFFh
CoIIInon Area 1 32k

------------------- 8000h 08000h
7FFFh 47FFFh

Bank Area 32k

ooOOh 40000h "-------------------

FFFFh OFFFFh
CoIIInon Area 1 32k

------------------- 8000h 08000h
7FFFh 4FFFFh

Bank. Area 32k

------------------- OOOOh 48000h

Since you want Common Area 1 to start at 8OOOH, you would
set up the 4 most significant bits of CBAR as l000H. To see how
the value was obtained just do the following:

Start I ng address : 8000H
8000h/l000h (4k) = 8h ; d I v I de address by 4k
08h : 1000 bin ; resu I t to b I nary
4 MSB's In CBAR = 1000

Since the Bank Area is to start at OOOOh, the 4 least
significant bits of CBAR will be O's. Then just convert l0000000b
to hex, and you will have a value for CBAR of SOh.

Now that the segments have been choosen for the 64k logical
address space, and set up with the CBAR register, the next step
is to determine what addresses in physical memory will be
mapped into those segments. There are two registers used for
that purpose, CBR and BBR.

MM\J Conrnon Base Reg! ster (CBR : 1/0 Address = 3BHl

bit 7 6 5 4 3 2 1 0
CB6 CB5 CB4 CB3 CB2 CB I CBO

CBR specifies the base address (on 4K boundaries) used to
generate a 19 bit physical address for Common Area 1accesses.
After a reset all of the CBR bits are set to O.

MM\J Bank Base Regl ster (BBR : 1/0 Address = 39H)

bit 7 6 5 4 3 2 1 0
BB6 BB5 BB4 BB3 BB2 BB1 BBO

CBAR = 80h CBR = OOh

Logical Address

BBR = 48h

Phys Ical Address

BBR specifies the base address (on 4K boundaries) used to
generate a 19 bit physical address for BanK Area accesses. All
bits of BBR are set to 0 after a hardware reset.

As an example, suppose that you want to switch a block of
memory starting at physical address SOOOOh into the Common
Area 1 segment (at the same time switching out whatever was
there). Then the CBR register would be loaded with SOh. It's that
simple. You just load the register with the two most significant
digits of a 5digit hexadecimal address in physical memory.

DISK DRIVE SERVICE
5V4"..............•................................... $35
8" $45

SERVICE SPECIALS
Apple II Drives '" $30
Shugart SA 4OO/400L $25
Shugart SA 800/801. $25
Shugart SA 850/851. $35

DRIVES FOR SALE
Shugart SA 800-2 (wide frame) $59
Shugart SA 850 (wide frame) $99
MPI 52S 5114" DS/DD full ht.. $55
Tandon 100-2 DS/DD full ht. $70
Tandon 100-1 SS/DD full ht. (new) $60
Apple II Drives $85
Genuine "IBM" (PC) floppy contr $60

60 day warranty on all drives and service. Turnaround
time usually 24-48 hours. Trade-in available for drives too
costly to repair. Prices do not include parts or shipping. If
parts are more than $20 we get permission before
repairing. Units returned UPS COD unless otherwise
requested. All drives for sale are reconditioned unless
otherwise noted and documentation is included.

LDL ELECTRONICS
13392158St. N., Jupiter, FL33478 (305) 747-7384

~~
CALENDAR/CLOCK

$69 KIT

,'~~~.Ii"".""D~~~S~ATMH FILEPING!
• Works with any Z- 80 based computer.
• Currently being used in Ampro, Kaypro

2, 4 & 10, Morrow, Northstar. Osborne,
Xerox, Zorba and many other computers.

• Piggybacks in Z80 socket.
• Uses National MM58167 clock chip, as

featured in May 182 Byte.
• Battery backup keeps time with CPU

power off!
• Optional software is available for file

date stamping, screen time displays,
etc.

• Specify computer type when ordering.
• Packages available:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground Shipping $ 3.

MASTERCARD. VISA. PERSONAL CHECKS.
MONEY ORDERS & C.O.D.'s ACCEPTED.

N.Y. STATE RESIDENTS ADD 8% SALES TAX

KENMORE
COMPVTER
TECHNOLOGIES

P.O. BOll 835. Kenmore. 'few York 1-1217 .716l "77·0617

The Computer Journal/Issue '27

Listing 2

Memory drive write routine
Output: Record moved from (DSBDMAl

Memory drive read routine
Input: Select parameters in Select Control Block
Output: Record moved to (DSBDMA)

Memory drive data move routine
Input: A=Address select bits for move

HL=Source address for move
DE=Destination address for move

Output: 128 bytes moved as requested

No interrupts
Switch in bank
Move the record
O=bank 0
Switch in normal map

Is it a write
Jump if so
Else set up addresses
And read the record

; Set up addresses
; Switch for write

mdaddr
de,hl

02h
z,mdwrit
mdaddr
mdmove

(bbrl,a
movrec
a
(bbrl,a

mdaddr: push hi Save buffer address
Id I,e Sector , to L
Id h,128 MUltiply by 128
mit hi HL now contains address in bank
Id a,c Track # to A
ric a MUltiply by 8
ric a
ric a

mdadr1 : add a,bank1 Add BBR offset
pop de DMA addr to DE
ret

mdread: cp
jr
call
jr

Memory drive address setup routine
Input: Information in Select Control Block
Output: A=Map address select bits

DE=lnternal record buffer address
HL=Record address in alternate Memory Map

The Hitachi 64180 bolds great promise for the 8-bit world,
and for CP1M in particular. n half of the products promised for
the chip are delivered, then you you will fmd 64180 based
systems will be around for a long time.

n you are interested in more information on the XLR8er, a
64180 based enhancement for the TRS-8O Model 4, contact H.I.
Tech Inc., P.O. Box 25404, Houston, TX'T1265, 1-800-835-2246 ext
202, or contact my BBS system, Rio Grande Z-Node #39, 915-592
4976.•

mdmove: di
outO
call
xor
outO
ei
ret

mdwr it: ca I I
ex

In Listing 2 you will see a portion of
the BIOS that I am running on a 64180
equipped machine. It shows a RAM disk
driver, and serves as a good example of
some actual 64180 code that utilizes the
memory past 64k. The memory on my
system (a TRS-80 Model 4 with a XLR8er
processor replacement board) has a 64k
block of memory starting at OOOOh, and
then another 256k starting at 4OOOOh.

You will notice a new instruction
aUTO, and it, along with several other
I/O instructions with the '0' added, are
nothing more than the standard Z80 I/O
instructions with the added feature of
placing all O's on the high order 8 bits of
the address bus. This assures that the in
struction accesses the 64180's internal
ports.

You will also see the MLT instruction
used. To use it just set up a register pair
CBC,DE,HL, or SP) with the values to be
multiplied (an 8 bit value in each 8 bit
register). The result will be stored as a 16
bit value in the same register pair.

I did not include the Disk Parameter
Header nor the Disk Parameter Block
for the RAM disk, as they are nothing
more than the standard CP1M struc
tures. The memory maps used as exam
ples in the prior text are the same ones
that this RAM disk driver uses. The
routines are strictly the low level
drivers, and the high level disk routines
are not shown.

There are already several packages
that are coded to allow the programmer
to access the 64180's extra memory from
within a high level language, without
having to worry about the complexities
of addressing it at the chip level. They
are Borland's Modula-2 from Micro
Mint, and 64180 Basic from Softaid.

64180 Basic is currently available,
and Modula-2 will soon be. There has also
been talk of several new CP1M packages
being written specifically for the 64180,
one of them being a Lotus-like spread
sheet. Echelon is currently working on a
new multi-tasking DOS and banked ZC
PR3 that will both utilize the 64180's
memory addressing features.

The Computer Journal/Issue 1127 27

Z sets you free!

(::il Echelon, Inc.
88S N. San Antonio Road, Los Altos, CA 94022 USA
415/948-3820 (order line and tech support)
NAME _

ADDRESS _

Payment to be made by:
o Cash
o Check
o Money Order
o UPSCOD
o MastercardNisa:

#_---------Exp. Date _

PRICEITEM

Subtotal

Sates Tax

ZCPR3: The UbnJrles
The extensive documentation for the libraries
of ZCPR3, SYSLlB, Z3L1B, and VLIB. Amust
for any serious user of these programming
tools. Loose-leaf notebook style; easy to wort<
with as it will lay flat on your desk.

THERE'S MORE
We couldn't fit all Echelon has to offer on a
single page (you see how small this type is).
We haven't begun to talk about the many
additional software packages and publications
we offer. Send in the order form below and just
check the "Requesting Uterature" box for more
information.

The Z-&yst8m U""'s Guide
For those who are not technically inclined. This
is an excellent tutorial-style manuaJ filled with
examples of how to use the power of ZCPR3I
Z-System most effectively, written by two
highly experienced Z users. (One user is a
lawyer, the other a writer; this proves that
anyone can use Z and benefit from it.)

nem Name Pnce
1 ZCPR3 Core JnsIaJJatJOn PacI<age $44.00 (3 dlslls)'
2 ZCPR3 UtlIIlJ8S Package $89.00 (9 dlslls)
3 Z3-DoI·Com (Auto· Install ZCPR3) $99.00 16 dlslls)'
4 Z3·DoI·Com "!!are M,n,mum- $49.95(1 diskI
5 Z·Com (Aula· Install Z-SYSteml $119.00 17 dlslls)"
6 Z-Com -Bare Minlmum~ $69.95 12 diSks)
,2 PUBLIC ZRDOS Plus (by rtseff) $59.50 11 dlsl<)
13 Kayp<o Z·System

Boatable 0.51< 569 95 (3 dlslls)
20 ZASlZLINK Macro Assemble<

and Linker $69.00 11 dlsl<)
21 ZOM Debugger lor 808OIZ801HD64180

CPU's $50.00 (1 d15l<)
22 Transiatars tor Assemble<

Source Code $51.00 (' dlsl<)
23 REVAS3I4 DIsassembler $90.00 11 dlsl<)
24 Specilol-

nems 20 tIlrough 23 $150.00 (4 disks)
25 DSD-80 Full SCreen

Debugger $129.95 (1 dlsl<)
27 The Libranes. SYSLIB. Z3l1B.

and VUB $69.00 (6 d'sIIs)
26 GraphICS and Windows

Ltbranes $49.00 (1 disk)
29 Specilol-

nems 27. 26. and B2 $129.00 (9 dISks)
40 InputIOu1put Recorder

lOP (VOR) $39.95 (1 dlsl<)
41 Background _ lOP

(BPnnter) $39.95 (1 dISk)
42 Programmable Key lOP (PKey) $39.95 (1 dISk)
43 Specilol-

nems 40 tI1rough 42 $89.95 (3 dISks)
60 OISCAT

Disk eataJogong system $39.99 (1 dISk)
61 TERM3

CommunlCalions Syslern $99.00 (6 dISks)
64 Z-Msg Message Handling

System $99.00 (1 dISk)
61 ZCPR3:The

bol.Wld, 350 pages $19.95
B2 ZCPR3: The Lalrarles

310 pages $29.95
B3 Z·NEWS _er,

1yr subsClpllon $24.00
84 ZCPR3 IIICI IOPlo 50 pages $9.95
as ZROOS PIogr_.'.

Manuel 35 pages $8.95
BB Z·Syatem UW. Guide .

80 page tutonaJ $14.95

'lncIudes ZCPR3: The Ma""" ,~

ORDER FORM

INSTALLING ZCPR3IZ-SYSTEM
Echelon offers ZCPR3IZ-System in many
different forms. For $44 you get the complete
source code to ZCPR3 and the installation files.
However, thiS takes some experience with
assembly language programming to get
running, as you must perform the installation
yoursell.

Other Features
There's much more to ZCPR3, like named
directories, online help system, etc., but it
can't be described on one page. If you would
like more information, consider the books
shown below.

For users who are not qualifiea in assembly
language programming, Echelon offers our
·auto-install" products. Z-Com is our 100%
complete Z-System which even a monkey can
install, because it installs itself. Z-Com
includes many interesting utility programs, like
UNERASE, MENU, VFILER, and much more.

Z·SYSTEM
Perhaps the only shortcoming of ZCPR3 is that
it is not a complete replacement for CP/M. This
is what the Z-System does. The Z-System
contains ZCPR3 and an additional module,
ZRDOS, and is a complete replacement for
CP/M. ZRDOS adds even more utility programs,
and has the nice feature of no need to warm
boot (AC) after changing a disk. Hard disk users
can take advantage of ZRDOS "archive" status
file handling to make incremental backup fast
and easy. Because ZRDOS is written to take
full advantage of the Z80, it executes faster
than ordinary CP/M and can improve your
system's performance by up to 10%.

Echelon also offers ·bootable" disks for some
CP/M computers, which reqUire absolutely no
installation, and are capable of reconfiguration
to change ZCPR3's memory requirements. At
present, only Kaypro computers have thiS
option available.

BOOKS
We sometimes joke around the office that we
are really in the business of publishing. not
selling software. We have books. Lots of
books. We have to have lots of books,
considering how powerful our software is and
the large quantity of different packages we
offer. Here are our best sellers:

ZCPR3: The Manual
This is the "bible" for the ZCPR3 user. An
exhaustive technical reference, bound
softcover, 350 pages. Contains descriptions of
each ZCPR3 utility program, a detailed
discussion about the iMards of ZCPR3, and a
full installation manual for those doing their own
installation. You could order it from B. Datton,
but why? Get it from us.

Extended Command Processing
When you type a command under CP/M, it will
only look for the program in the current drive
and user area. ZCPR3 gives you more flexibility
by additionally searching other disks and user
areas when reSOlving commands. You have full
control of this function, called the PATH. This is
probably the one element of ZCPR3 that is
missed most if you return to ·ordinary- CP/M.

User-Programmed menu systems
ZCPR3 comes with three different menu
systems that you can use to create custom
menu-driven "front ends· for your computer.
This is especially useful for setting up menus
for your spouse or co-workers to use the
computer, as they never have to see the A>
prompt. All they have to do is press a single
key to run any single or multiple CP/M
programs, and when the task is done, control IS
automatically returned to the menu (ordinary
CP/M menu programs cannot do thiS).

WHO WE ARE
Echelon is a unique company, oriented
exclusively toward your CP/M-compatible
computer. Echelon offers top quality software
at extremely low prices; our customers are
overwhelmed at the amount of software they
receive when buying our products. For
example, the Z-Com product comes with
approximately 80 utility programs; and our
TERM III communications package runs to a
full megabyte of files. This is real value for your
software dollar.

ZCPR3
Echelon is famous for our operating systems
products. ZCPR3, our CP/M enhancement,
was written by a software professional who
wanted to add features normally found in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully, and ZCPR3 has become the
environment of choice for ·power· CP/M users.

Also, ZCPR3 supports the capability of
grouping all your commonly used utility
programs into a library file r.LBR). This is great
for systems with a small number of directory
entries per disk, as the library file only uses
one entry. It also has the advantage of
reducing disk space requirements for a given
set of programs, allowing you to put more
programs on a disk. And the programs in the
library file are invokable from the command line
just like any other program not in the library.

Multiple Commands per Line
You can eaSily use multiple commands per line
under ZCPR3. Simply separate the IndiVidual
commands with semicolons. For example, "PIP
B:=A:'TXT;STAT B:·.·· will copy files and then
show you the STAT results.

TELEPHONE DISK FORMAT _

o REQUESTING LITERATURE

28

Califomia residents add 7% sales tax.
Add $4.00 shippinglhandling.

ShippinglHandling

Total

The Computer Journal/Issue 1127

ZSIG Corner
Command Line Generators and Aliases

by Jay Sage, ZSIG Software Librarian

When I first offered to write a regular column for The
Computer Journal, I wondered if I would have enough material
for a column every two months. Instead, the problem has
become one of finding the time to set down all the thoughts I
have. For this issue I had planned to cover four topics, there is
only room for three of them. They are: 1) corrections of some
errors in the last column (and an excuse for more discussion of
flow control in Z System); 2) a brief rundown on the files in the
first officially released ZSIG diskette; and 3) a discussion of
command-line-building programs in ZCPR3, including aliases
and shells.

Corrections
There were two errors that I noticed in the last column. One

was a minor one that was Art Carlson's fault; the other was
more serious and was my doing. First for the easy one. Art was
kind enough to add information at the end of the column on how
to contact me, but the Z-Node he listed there was not mine. It
was the Lillipute Z-Node in Chicago, which is the official ZSIG
remote access system (its phone number is 312-649-1730).
Messages left for me there will get to me, but I will get them
sooner if they are left for me on my own node in Boston at 617
965-7259. I can also be reached on my voice phone at 617-965-3552
(please don't mix the two numbers up, especially if you are
calling in the middle of the night!). Finding me at home is not
always easy, and your chances will be best if you call between 10
p.m. and just after 11 p.m. (Boston time, of course). Ifyou would
rather write, the address is Jay Sage, 1435 Centre Street,
Newton Centre, MA 02159.

Now for the error I made. In the discussion of the flow con
trol package (FCP) and the transient IF.COM, I said that one
can force use of the transient program by including a DU: or
DIR: prefix or even just a colon in front of the 'IF'. This is not
true. I thought I had verified the statement experimentally, but
my experiment was flawed, and the conclusion incorrect. A
colon does force the command processor to skip commands in
the resident command package <RCP) and in the CPR itself and
to proceed with a search for a COM me, but all the FCP resident
commands are intercepted no matter whether there is a colon or
not. There is a very good reason for this. The FCP commands
must be executed even when the current IF state is false. This is
especially clear for commands like ELSE, which reverses the
current IF state, and FI, which terminates the current IF state.
Transients ELSE.COM and FI.COM could not do this. After a bit
of thought you can probably see that this is true for all the flow
control commands.

I have long been searching for ways to give the user control
over whether IF processing is performed by resident or tran
sient code. One solution that I introduced some time ago was ad
ding alternative names for condition options in IF.COM so that
one could force the more powerful transient processing to be

The Computer Journal/Issue '27

performed even when the function was supported by the
resident FCP. The trick was to use condition names in IF.COM
that were different from the names of the same functions in the
FCP module. Specifically, I changed the first letters to 'X' (for
example XXIST for EXIST and XNPUT for INPUT). Frank
Gaude' in the Echelon Z-News has reported examples in which
the transient program is given a name other than IF.COM (such
as IFI3.COMJ. Then the command "IF INPUT" gives resident
processing and "IF13 INPUT" transient processing. This will
work correctly for first level IF processing but will not work in
general.

Neither of these solutions was really satisfactory. A proper
solution, I felt, would operate both correctly and automatically.
I have now written a new FCP package (FCPI0) that is presen
tly under test by ZSIG program committee members and should
be ready for release with the next ZSIG diskette. It handles both
resident and transient code. It can examine the command line to
see if there was a colon before the IF. In that case, the FCP
ignores its internal condition options and invokes the transient
IF.COM immediately. If no colon was present, the FCP first
looks to see if the condition option is included in the resident
code. If not, it automatically invokes the transient IF processor.
The user need not be concerned with which options are resident
in the FCP. The script "IF NULL $1" in an alias will take advan
tage of fast resident processing if the NULL option is supported
in the resident code or will automatically invoke transient
processing if not. When one wants to be sure to get transient
processing, one simply uses the colon as in ": IF EXIST
FILE1,FILE2".

To go along with FCPI0 there is a new transient IF
processor, COMIFI0. It supports dozens of additional condition
tests. One is AMBIG, which tests a me specification for am
biguity (question marks or asterisks>. Register (numeric) and
string (alphabetic) comparisons are now extended to the full
range of tests: equal, not equal, greater, less, greater than or
equal, and less than or equal. I plan to add me attribute testing
(SYS, DIR, RO, RW, ARC, WP) and testing for the presence of
Plu·Perfect Software's exciting Backgrounder task-swapping
program.

The new FCP/COMIF combination also adds an important
new twist in transient processing. They have the option of
loading the transient code not at l00H, as has been done until
now, but high in memory, where it will not overwrite a user
program that is loaded at l00H. In this way the GO command
can be used to rerun the last user program after flow control
processing no matter whether resident or transient flow
processing was used. Thus the user need not concern himself
with how the flow processing was performed.

While I was at it, I also added two new commands to the
FCP module. One, IFQ (if query), is designed to help users
advanced as well as novice -learn how flow control works (or,

29

ZCRCK.LBR ZFINDU.LBR ZLDIR.LBR
ZTX'ITOWS.LBR ZWC.LBR

ZSIG Diskette #1
Now that I have atoned, I hope, for my sin in the last issue, I

will turn to the first new subject, the inaugural ZSIG diskette.
Let me remind you that this diskette and a number of others put
out by NAOG/ZSIG (NAOG = North American One-Eighty
Group, the group formed to support the SBI80 computer and
other computers using the Hitachi HD64180 microprocessor)
can be ordered from NAOG/ZSIG (P.O. Box 2781, Warminster,
PA 18974). I encourage all of you to join ZSIG ($15>. You'll get a
nice newletter with Z System tips and details on all the
NAOG/ZSIG diskettes.

Here is a listing of the files in ZSIG diskette N1.

perhaps, is not working as one intends). It displays on the screen
the complete flow state of the system - the true/false status of
all IF levels. The second is ZIF (zero ifs). It is like XIF (end all
ifs) except for one thing. XIF clears al-l IF states only if the
current IF state is true; if the current IF state is false, XIF is
flushed (ignored) just like any other command. ZIF, on the
other hand, clears all IF states no matter what. I'm sure that
everyone who has eXperimented with flow control has at one
time or another gotten himself so messed up that nothing
seemed to work. The only way out, short of rebooting, was to
type a string of FIs until things started working again. ZIF is a
quick way to reinitialize the flow control system (and it takes
very little code in the FCP) .

The ftnt three programs are by Paul Pomerleau. Paul is a
speed freak and, like many of us, found the process of installing
Z programs with Z3INS (the standard installation utility)
tedious and slow. So Paul wrote Z.RIP, given that name because
it rips through an entire disk of flIes at incredible speed,
automatically identifying the ZCPR programs and installing
them. The new autoinstall versions of ZCPR3 may make Z.RIP
(not to mention Z3INS) obsolete, but it is great for those running
standard ZCPR. VERROR is Paul's video error handler. It
provides a screen display of the entire command line in which
an error was detected and allows the user to edit it freely,
moving about using WordStar-like commands. VCED is Paul's
Video Command EDitor, a video history shell. With VCED run
ning as a shell, the user always has full command-line editing.
In addition, past commands can be recalled, searched for,
edited, and run. As if that were not enough, it doubles as a video
error handler as well! Paul astutely noted the functional
similarity between correcting old commands with errors and
entering new commands - so he combined the two functions in
a single program.

The next group of five programs comprises Z versions of
common CP/M utilities. Most of these were created by the
prolific program fIXer and NAOG/ZSIG chief, Bruce Morgen.
The main feature that makes these programs ZCPR3-com
patible is their ability to accept named directory <OIR:)
references as well as drive/user <OU:) references. For
programmers and aspiring programmers reading this, you

should know that the code to do this in ZCPR3 is actually much
simpler than the CP/M code needed just to recognize the DU:
form. This is because the ZCPR3 command processor already
does all the work for the first two arguments on the command
line (including translating named directory references into
drive/user values>. Unlike CP/M, ZCPR3 saves not only the
drive but also the user number in the default flIe control blocks
at 5CH and 6CH. A ZCPR3 program need only fetch the values
from the appropriate locations. The hardest part of making
these ZCPR3 versions of the CP/M programs was stripping out
the complex and lengthy parsers required to accept DU: syntax
in CP/M. (So much for the myth of ZCPR3 complexity!
Programming in ZCPR3 is often, as in this example, simpler
than programming in standard CP/M.)

The third group of programs includes two more ZCPR3 ver
sions of CP/M programs. They are listed separately only
because they do not have names with Zs in front! Here is a quick
listing of the functions of all seven of these converted programs:

ZCRCK ., computes cyclic redundancy check codes for files
using both common CRC polynomials

ZFINDU - searches for text strings in flIes, including files
that are squeezed

ZLDIR - displays a directory of the mes in a library
ZTXTTOWS - converts standard text mes to WordStar files
ZWC - counts the number of words in a text file
PPIP14 - copies mes (as does PIP) but with nicer interface

and fast - I renamed it to COpy'and use it all the time
UF - Steven Greenberg's ultrafast me unsqueezer

The last two programs are original creations for the Z
System. LDSK, by Wilson Bent with modifications by Earl
Boone, solves a longstanding problem that owners of floppy
disk·based computers had with named directories. With hard
disks, there is an unchanging association between directory
names and drive/user values, but with floppies the association
changes every time the diskette is changed. Wilson devised this
nifty scheme for automatically loading the named directory
register (NDR) with the names associated with user areas on a
floppy diskette. To give a user area a name, one simply puts a
(usually zero-length) file in that user area with a name of the
form "·NAME". When LDSK is run (specifying the drive to be
loaded), it scans the disk for files of this type, strips the leading
hyphen, and creates an entry in the NDR associating the name
with that user number on the drive. As I wrote in the last
column, I still have a lot of floppy-only systems, and I love LD
SK.

Haven't you at times wished that you could take some
program that only works on a single file and magically make it
work with an ambiguous file reference. Well, Steve Cohen did,
so out of his programmer's bat he pulled the wildcard shell oW'
to do it. It just shows again that the only real limitation with the
Z System is one's imagination! Here are some examples of bow
oW' can be used. Bob Freed wrote a quick little program called
PCPCK that checks a file for proper transmission over Telenet's
PC-Pursuit packet network (certain character sequences cause
problems). The trouble is, PCPCK only works on a single file,
and it is no fun to run it manually on every file one is about to
send somewhere. But along comes 'W' and all I have to do is en·
ter "W PCPCK •.•" and away we go. Or suppose you are just
lazy and hate typing exact names of meso Just put a oW' in front
of the command and enter a wildcard me name that specifies
the file you want. That's all there is to it. I have 'W' implemen-

VERRORI7.LBR VCED18.LBR

UF.LBR

W20.LBR

Z.RIP.LBR

LDSK20.LBR

PPIP14.LBR

30 The Computer Joumal/188uell27

ted in an alias on my Z-Node system so that users can type a file
without having to enter the exact name. If a user can't remem
ber (or doesn't really care) whether the file is AUTOINST.FIX
or AUTOINST.FQZ or AUTOINST.FZX, all he has to enter is
"TYPE AUTO·.·" and the file (whatever it is called) will ap-
pear on the screen. \

Command Line Generators
Many people call me about problems they are having get

ting an alias or VFILER script to work correctly. Often the
problem turns out to be a misunderstanding of what command
line generators are really doing. I will try to shed a little more
light on that subject here.

First a little philosophy. There are many features in the Z
System about which one might well at first just shrug one's
shoulders and say, "So what!" The flow control system
discussed earlier is one such feature, and multiple commands
on a line might be another. After all, how many of us actually
think far enough ahead to enter more than one command at a
time anyway? Well, the answer lies in the interplay of all the
features in Z System and in the ways they allow things to be ac
complished automatically.

Aliases
The multiple command capability of ZSystem, for example,

is important not so much because it allows the user to enter a
whole sequence of commands manually but rather because it
allows other programs to do so automatically. The simple, stan
dalone 'alias' created with the original ALIAS.COM or one of the
more sophisticated alias programs like TALIAS, BALlAS, or
VALlAS is a good example. Let's see how such an alias might be
used. Suppose we are working on a new program with a source
file called MYPROG.ZSO. Our standard sequence of operations
is to edit the source with a command like "EDIT MYPROG.ZSO"
and then to assemble it with a command like "ASM
MYPROG.AAZ" and then to load it with a command like
"MLOAD MYPROGl". We can speed things up and reduce the
amount of typing (and the number of typos!) by creating an
alias which we might give the name DO.COM. We would create
it, with VALlAS for example, with the following script (com
mand line form);

EDIT MYPROG.Z80;ASM MYPROG.AAZ;MLOAD MYPROG

Now when we want to start a new cycle, we just enter the easily
spelled command "DO". The rest is automatic.

But how does this alias actually work? When you enter the
command "DO", the operating system loads DO.COM into
memory and starts running it. DO contains within its file the
script line put there by VALIAS.COM (for example) when the
alias was created. DO.COM bas code to determine where the Z
System multiple command line is located in memory (this in
formation comes from what is called the environment descrip
tor, whose address is installed in a standard location near the
beginning of all true Z System programs). Next DO.COM takes
its command script, appends any other commands in the
multiple command line that come after the "DO" command,
and then writes the result back to the command line buffer.
When it then returns to Z System, the ZCPR3 command
processor, as usual, looks at the command line buffer to see if
there are more jobs listed there for it to do. Since DO.COM has
filled the command line buffer with the script, ZCPR3 responds
just as if we had typed the long command line script instead of

The Computer Journal J Issue #127

SAGE MICROSYSTEMS EAST

Seiling & Supporting
The Be.t In 8·Blt Software

• Plu·Perfect SYltlml
- Backgrounder II: switch between two or three running tasks

under CP/M ($75)
- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)
• Eehllon (Z·SYltlm Softwlrl'

. ZCDM: automatically installing full Z-System ($70 basic package, or
$119 with all utilities on disk)

. ZRDOS: enhanced disk operating system, automatic disk logging
and backup ($59.50)

- DSD: the incredible Dynamic Screen Debugger lets you really
see programs run ($130)

• SLR SYltlml (Thl Ultimate AI..mbly lIngulg. TooII'
- Assemblers: Z80ASM (Z80). SLR180 (HD64180), SLRMAC (8080).

and SLR085 (8085)
- Linker: SLRNK
- Memory-based versions ($50)
- Virtual memory versions ($195)

• NlghtOwl IAdvlneld TelleommunlCltlonl)
- MEX-Plus: automated modem operation ($60)
- Terminal Emulators: VT100, TV1925, DG100 ($30)

Same-day shipping of most products with modem download and support
available. Shipping and handling $4 per order. SpeCify format.
Check, VISA. or MasterCard.

Sage Mlcrosystems East
1435 Centre St., Newton, MA 02159

Voice: 617·965-3552 (9:00 a.m. ·11:15 p.m.)
Modem: 617-965-7259 (24 hr., 300/1200/2400 bps,

password =DDT, on PC·Pursuit)

the simple "DO".
Now let's see how flow control can be used with alias scripts.

One problem with the command sequence in our example arises
when the assembler reports an error. In that case there is no
sense going through the MLOAD operation. Assemblers like
ZAS from Echelon and ZSOASM from SLR Systems set a flag in
the Z System to show whether or not they encountered any fatal
errors during the assembly, and the flow control command "IF
ERROR" can test the state of that flag. We can improve our
script as follows:

EDIT MYPROG.Z80;ZAS MYPROG;IF - ERROR;MLOAD MYPROG;Fl

In this script the MLOAD command will only be executed if the
program error flag bas not been set by ZAS (the tilde' - , has the
meaning 'not'). Typing all those flow control commands
manually would be more trouble than entering single comman
ds at a time, but with an alias we are still typing only two let
ters: "DO".

So far so good. But what happens when we want to start
work on another program, say NEWPROG? Do we have to
create a new alias, such as DONEW? The answer is that the
alias program actually does much more than just copy a com
mand script as is into the multiple command line buffer. It is
capable of making parameter expansions, the simpler examples
of which are like the parameter expansions that occur with the
CP1M SUBMIT program. We can store the alias script as:

EDIT$l.Z80;ZAS$l;IF -ERROR;MLOAD$l;FI

31

The '$1' is a symbol representing the first token after the com
mand on the command line that invoked the alias program.
Thus when we enter the command "DO MYPROG" we get the
first script we discussed, but when we enter "DO NEWPROG"
we get a command line for working on NEWPROG instead. A
single alias thus becomes very flexible. There are quite a num
ber of parameter forms that can be processed by aliases, and I
refer you to Rick Conn's "ZCPR3, The Manual" and various
HELP files for more detailed information.

Now let's try something a little trickier. Sometimes we have
already edited a file and just want to assemble and load it (if
there is no error in assembling, of course). So we create an alias
calledAL (for assemble/link)

ZAS$I;IF - ERROR;MLOAD$I;FI

[I am using ZAS in these examples rather than the SLR
ZSOASM, which I prefer, because the SLR assemblers can
produce a COM file directly in one pass and do not need MLOAD
or the flow control error checking. Thus they do not serve the
purposes of my example here,] Now what do you think will hap
pen if we define our DO alias as follows:

EDIT $1.Z80; AL $1

Do you think that will work? One alias inside another? Well, it
will indeed! Aliases can be nested. How deeply? Without any
limit! Before we explain why this is, let's look at an even more
fascinating example. When I sit down to work on a program, I
typically go through one edit/assemble cycle after another (just
don't seem to be able to get it right the first time). So I make my
DO alias have the following script:

EDIT $1.Z80; AL $1; DO $1
This alias actually invokes itself! ! When one cycle is finished,

it just goes back for more. Now let's look at what goes on in the
system after we enter the command "DO MYPROG". The DO
alias expands its script and writes the following command line
into the multiple command line buffer:

EDIT MYPROG.Z80;AL MYPROG;DO MYPROG.

After the editing is finished, AL runs, expands its script, and fills
the command line buffer with the following command line:

ZASMYPROG;IF - ERROR;MLOADMYPROG;FI;DOMYPROG

Note that the alias always appends to its own script any other
commands in the command line after itself (hence the DO
MYPROG on the end). Now ZAS runs, and. depending on
whether there were errors or not, MLOAD may run. Finally
ZCPR3 gets to the DO command, and we are right back where
we started. The whole process is repeated (and repeated again).
In fact, the only trouble with this alias is that there is no way
out! You can't stop!

Well, we all hope we will get the program right eventually,
so we really would like to be able to get out of the alias. Flow
control can help us again. Consider the script

EDIT Sl.Z80;ALSI;ECHO EDIT AGAIN? ;IF INPUT; DO Sl;FI

32

Now, before reinvoking DO, the alias asks us if we want to edit
the file again. If we give a negative answer (anything other than
carriage return, space bar, 'Y' for yes, or 'T' for true), the loop
is broken. If we answer affirmatively with a quick tap of the
return key, we start again. Very quick and easy.

There is one subtle problem, however. If you go through the
exercise of expanding the alias scripts, you will see that with
each cycle an extra 'F!' builds up at the end of the command
line. Even more careful analysis will show that with each cycle
we go one IF level deeper as well. One of two problems will
eventually spoil our plan. Either the command line will get so
long that it won't fit in the command line buffer, or we will run
out of IF levels (eight is the maximum). What can we do about
these problems?

The FCP has the XIF command precisely for this reason. If
we put an XIF command at the beginning of the script, we will
reset the IF system to level 0 every time we reenter the loop.
Then the limit will be overflow of the command line. When this
happened to me, I invented a special type of alias - the recur
sive alias - and incorporated it into my VALlAS program (as
far as I know only VALlAS and ARUNZ support this alias type).
It works the same as a regular alias except for one thing - it
does not append to the script expansion any commands that
were pending in the command line buffer; it just throws them
away. Thus in the above example all the FIs would be discarded
when DO was invoked again, and the pileup would be avoided.
When an alias is created with VALlAS, one can select either a
normal alias or a recursive alias. But note that no other com
mand can ever follow a recursive alias on a multiple command
line. Recursive aliases should be used only in special cases like
the one described here.

Shells
Aliases are not the only command line generators. Most

shells also generate command lines for the user. In some cases
(VCED, described above, and MENU) this is their main pur
pose; in other cases it is secondary (VFILERl. Before we
examine the way they generate command lines, let's look at the
way shells operate in the Z System.

The essential purpose of shells is to create just the kind of
recursive command situation we were just developing with our
alias example. But they achieve that function in a very different
way. A shell has a kind of schizophrenic personality as a result
of being invoked in two significantly different circumstances.
One circumstance is when it is invoked directly or indirectly
(e.g., from an alias) as the result of a user command. In this
case, the shell has one basic purpose - to perpetuate its own
existence as a command. It does this by entering its name as a
command into a special buffer (area in memory) in the Z
System called the shell stack. Having done that, it can then
return control to the operating system. (The smarter shells
generally do something a little more sophisticated at this point,
but the principle is correct as I have described it.)

Now we come to the unique role of shells in the Z System.
The CP1M command processor gets commands from only two
possible sources: 1) from a submit file, if one exists, or 2) from
the user. The Z System gets commands from at least four sour
ces and in the following order of priority <ignoring the tricky
role of ZEX): 1) from the multiple command line buffer; 2)
from a submit file; 3) from the shell stack; and 4) if all else fails,
from the user. Observe that so long as the shell stack has a
command in it, the command processor will never turn to the

The Computer Journal/Issue 1127

it

user for input! That is why one can regard the shell as taking
over the command processor function. While the shell is run
ning, it becomes the source of commands for the system.

How does the shell do this? By expressing its second and
more dramatic personality. Another special buffer in the Z
System, the message buffer, con~ins a flag byte that is set by
the ZCPRa command processor to indicate whether a program
has been invoked as a user command or as a shell (or as an error
handler). We have already discussed the simple goal of the shell
in the former case. In the latter case the shell actually carries
out its real function in life. Let's consider the MENU shell as an
example.

When the MENU.COM is loaded as a shell, it displays a
screen of command choices to the user. Each single-cltaracter
choice is associated with a command line script, much like the
alias script. When the user strikes a key, MENU looks up the
script associated with that character, expands the script (sub
stituting parameters), and puts the resulting command into the
multiple command line buffer. It then returns control to the ZC
PRa command processor, ZCPRa executes the commands in the
command buffer one after another until they have all been per
formed. Then, when the command buffer is empty again, ZC
PRa looks in the shell stack, finds the MENU command there,
and runs MENU again. This process continues until a special
user key is entered (control-c in the case of MENU) that signals
the shell that it should remove itself from the shell stack. Then
things return to the state they were in before the shell was in
voked initially by the user. Shells, by the way, can be nested (the
usual shell stack is four entries deep), so when one shell
removes itself from the shell stack, control may still not return
to the user. Another shell, whose role was superceded by the
most recent shell, may now come back into control.

With the MENU.COM the displayed menu of choices and the
scripts associated with the choices are both included in a text
file that is read in by the program. This makes it very easy for
the user to create and modify the display and the scripts. Con
sidering again our program development example, we might
create a menu screen with the following display:

S. Select name of program
E. Edit program source code
A. Assemble program to HEX file
L. Load program to COM flle
R. Run program
F. Full cycle (edit, assemble, load)

These choices might be associated with the following command
scripts:

S setfile 1 "Enter name (only) of program to work on: "
E edit $n1.Z80
Azas$n1
Lmload$n1
R$n1
F edit $n1.z80;zas $n1; if -er;mload $n1;fi

There are two interesting new parameters illustrated in
these scripts. One is the $Nl parameter. As part of the Z System
environment buffer, four system flle names are defined. MENU
can read these four flle names and put into scripts the complete
fllename ($Fn), the name only ($Nn), 01' the type only ($Tn),
where 'n' is 1, 2. 3, or 4. The'S' selection sets the first system flle
name using the program SETFILE, and the others then use it.

The Computer Journal Ilasue127

The'S' selection illustrates the other new script parameter
- prompted user input. When the script for choice'S' is being
expanded, the text between quotes will be displayed as a prompt
to the user, and one line of user input will be substituted into the
command line in place of the prompt. It is with prompted input
that many users get confused and make mistakes. Suppose you
want to be clever and helpful by displaying a directory of
existing programs to jog the user's memory before asking for
his choice. You might think of using the script

S dir ·.z80;setfile 1 "Enter program name: ..

This will not have the effect intended! One must not forget that
the user is prompted for input by the shell at the time the script
Is expanded, not at the time when the command line is executed.
In this example the user will be prompted for his choice before
the directory is displayed. Thus, the directory display is useless.

To achieve the result intended above you must combine
scripts. You can create an ARUNZ alias called SETNAME with
the following script (ARUNZ supports prompted input) :

SETNAME setfile 1 "Enter name of file: ..

The MENU script would then be:

S dir • ,z80; arunz setname

When the MENU script is expanded, the command becomes
"DIR ·,Z80;ARUNZ SETNAME", and this command is then
run. It is not until ARUNZ SETNAME is executed that ARUNZ
prompts the user for the name of the file. At this point the direc
tory of files with type Z80 has already been displayed on the
screen.

There is obviously much more that could be said about the
command line generators in ZCPR3. The discussion here has
been only an overview, but I hope that it will inspire you to take
a fresh look at and to experiment with aliases and shells of an
kinds: the standalone aliases generated by ALIAS, VALIAS.
TALIAS, or BALIAS; thetext-flle-basedalias generator ARUNZ
with its ALIAS.CMD me; the menu- or macro-type shells
MENU, VMENU, FMANAGER. VFILER, and ZFILER; and
the command-line history shells HSH and VCED.

Plans for Next 'fime
As I said at the beginning of the article. I had pl8JJDed to

cover, along with all the subjects above, techniques for
customizing the z.cOM self-installing version of Z System. But
there just isn't the time 01' space. So I will have to leave that far
the next issue. Let me just say one thing here. If you do not
already have ZSystem running on your computer and haYe beId
back on buying z.cOM from Echelon because you tbougIIt it
would not offer you the flexibility of a custom installation. bald
off DO longer. Buy z.coMl Start the exbilarating pnceIS of
discovering Z System DOW. By the time my discussion ofz.coll
hacking is complete. you will know bow to get just as IIIIJCIa
flexibility with z.coM as with a manually installed versioa.lt is
much more fun to start with something that is workiDlf ... to
improve it than it is to spend many frustrating weeks ar,iIc to
get an initial manual version working.

I want to close with my usual invitation and enCOURl ..
- please write and call with your comments and sugges&Es of
allkinds.•

33

guess the problem comes down to the
formatting program for the hard disk
which limits us to four apparent drives,
currently E,F,G,H. We are using an
Adaptec ACB4000 so have a second SCSI
slot available to run another drive.

What appears to be needed are the
following:

(1) Modifications to HDINIT.COM
allowing us to set up say five drives per
40MB hard disk of say a little under 8MB
each.

(2) A way to be able to configure
another drive as drives J ,K,L,M etc.
which doesn't appear possible at present.

OUr present hard disk is a NEC D5146.
Possibly since it has only 4 data disks
item 1 is impossible, but I see no reason
that item 2can not be done.

Unfortunately our programming is
done in the higher level languages such
as Dbase, Pascal, etc, and the
hieroglyphics of HD64180 and Z-80
assembly code are Greek to us. I guess
we shall have to take the bull by the hor
ns one day and get down to it.

Thanks for an excellent publication to
date. Keep it up and please ensure no
defection to the Imbecile's Biggest
Mistake.

J.T.L.
Editor's Note: As I understand it, the
basic problem is that CP1M can only ad
dress 8MB per drive and the hard drive
controller can only handle four drives.
Thus you can only partition a physical
drive into four logical drives of 8MB
each, and four times eight equals thirty
two. The answer is to use more than one
physical drive and more than one hard
drive controller, and partition each
physical drive into several logical drives.
I also feel safer with my data spread over
several physical drives. I would choose
20MB drives, each partitioned into four
5MB sections, and would use ZCPR3 so
that all user areas are available.

Reader's

8-Bit Fan
To date I have found TCJ to be the best

publication of many that land on my desk
in a week. Always good solid hands on in
formation. Hopefully you will not go the
IBM route as did another magazine. We
broke our rule with them about more that
a one year subscription and after a
couple of issues off they went
predominantly IBM. Reading items of in
terest to us in it takes less that five
minutes and we are not renewing for that
reason.

Somewhere you got our initials shor
tened up regarding the hard disk
problems in issues #25 and #26, the
initials should have been JTL not JT. The
reply from Tom Hilton in issue 26 was
very interesting but not an answer. Cer
tainly we agree with the 8MB limit
BUT our question was how do we add say

_another 40MB drive to an SBI80 system.
OUr BIOS can go to drive UP". We can
only access 32MB of our present 40MB
drive now,leaving a lot of unused area. I

E.T.

Editor's Note: Is anyone willing to of
fer some help or comments on this
project even if it doesn't concern the
ZX81?

Laser Rangefinder
I am a student in a Science &

Technology program, and during our
Senior year we must complete a year
long research project and Senior Thesis.
I am building a portable laser ranging
device and I want to hook the experiment
up to a ZX81 computer. The laser will
stop and start a timer as it is shot and
returns from a target. I want to send the
time to a program that will calculate the
distance to the target.

I was wondering if you have had any
prior experience with this particular
computer and if you could give me some
advice or suggest someone who could. I
would be most grateful for any help.

CLOSED
SUN &I1lN

101m-6pm
nT

OPEN
IOom-6pm

CLOSED
SUN &I1lN

WE H VE A NEW 8M' PtE M f.IVE I
A CALL AT "'S-Zf>'-'fSI.3 ANt) LET
lifE "NOW WH"T RI AN
yO(} THIN".

TANDEN ·PCBA 166400

ONLY $ 2499

15 DAY TRIAL PIRIOD. HURRY SUPPLY
WOII. LAST LOIIG AT THIS PRle!!

=c::l===
=1"1" • = ===========5======: =========

Silicon'VslleySUrPIUs
415-261-4506
~ 1 OAKPORT OAKLAND CA. 94601

$45 NORROW :
~~N~~H~

.. Over 15.000 of these Sing!;=;
board computers Installed .

.. Free copy of the "WORROW
OWNERS REVIEW". The national
magazine devoted just to the
NORROW computer. ;'U~~"O lot

.. We have over 2000 in stock

.. 4 mhz Z60A CPU. 64K RAN
16/32K RON

.. 2 RS232 senal ports (300
19.2k baud with db25 con
nectors Installed)

.. Centronics printer port ~:':S8

.. Power requirements-
+12vdc -I 2vdc +5vdc

.. Floppy disk controller up to 4
dri..... SSDD staDdard Rom for
DSDD o46lpi or 96tJ), S 1Z .ztra
iDcludlDI a_mbl" bios

.. CP/N biOS,Wordslar.and 8azic
Included

.. SChemalic. bios.asm. malnt
manual and users guide
Included

.. Copy program to read /write
non morrow formats such as
X:aypro. Osborne. Xeroz. & etc.

.. OPtional rs232 terrr\lnal pcb.

~
onitor pcb. and display

u S59_(~U1 purc!'_ of c!.u. a.
,0 sa"'D". from n~ ..ric.,

34 The Computer Journal/Issue '27

BUILDING A ROBOT
MOTION PACKAGE

DIRECT GEAR DRIVE FOR
WHEELS 12 INCH OR LARGER

INCLUDIS:
2uDC MOTORS
2(" 16: I GiARBOliS
2[" 24 TOOTH STI!I!L SPUR GI!AAS
2u 60 TOOTH NYLON lOLl GiARS
2u 235 TOOTH 12 INCH DRIVI! GI!ARS

MOTOR. GEARBOX. & IDLE GEAR ARE PRE
ASSEMI5LED. DRIVE GEAR IS READY TO
MOUNT ON YOUR WHEEL.

101~~pm

CLOSED
SUN &~N

SiIlcon'V.uevSUfPIUS
415-261-4506

440 1 OAKPO~T OAKLAND CA. 94601,

VDC RPM NO LOAD STALL MPH "'TH ,2"

24 34 BOO MA 10 DAMP I 25 ~~~~~l
IB 27 600 MA 75AMP 96 ~~ND;~~
12 I B 500 MA 5 DAMP 64 COMPUTi

4 M 1

1$7 00 EQUIPMENT CASE I

LJl
SIMULATED LEATHER FINISH
10 INCH I5Y 12 INCH I5Y 4 INCH
RUGGED AI5S PLASTIC WITH
CHROME PLATED LATCHES

USE IT FOR A CAMERA CASE.TooL BOX. OR
PORTABLE EQUIPMENT CASE.GREAT WAY
TO CARRY THOSE !lOOKS AND SOFTWARE
TO AND FROMORK

1$2900 PRECISION x Y TABLE I
TO GLOI5E DC GEARMOTORS. ~

LINEAR POT FEEDBACK •
USED IN MICRO FITCH READER ,~•. ~""t.'
TABLE HAS 4 5 -BV 6- TRAVEL !,........".•

~11lCG£ARMOTIR 114 00
1

~ VOLT TO 12 VOLT DC OPERATION
50 TO 1 GEAR REDUCTION.

A PAIR OF THESE ILL MOVE A
500 LIl ROBOT

1,64. oRAMS1S EACHI~
1600 FOR A PKG OF 6 ./'1
SOLD IN PKG OF" OR 9 ONLY is
NEW CHIPS TESTED I5Y US AND
EACH ONE GUARANTIED TOORK
.B3 EA IF YOU BUV "OR LESS

IC SALE THIS MONTH ONL Y
HM6116 .40 82C51 199

74LS393.60 6502 199

~~LS245.50 FDC 7652 99

4 17 .40 80C86 399

CALL OUR MODEM CATALOG
115-261-1513

';111 rl I cln!f I.~ ~~ , II ,,,,,_It._T_"x''
r,i.." oxtro.s._ clloct I' Mol 1.90 ror COD.

m~',=Mr.I:~~'"~~~ ::":,Wmi'/~'"!

Smcon'V.uev$}JfPIus lJ:~~~m
PST

415-261-4506 CLOSED
4401 OAKPORT OAKlAND CA, 94601 SUN&~N

•

diligently started.
I have a North Star ZSOA Processor

Board model ZPBA2, copyright 1977. It is
in an IMSAI computer, and has
developed a minor glitch. I have
schematics on everything else, do you
know where I might find the processor
board schematics?

You mentioned, I believe, in a previous
issue that you would like to have a
library of old schematics and instruc
tions for various archaic systems. If this
is true, I can offer copies of the Big Board
I (l have two working boards to possibly
sell), the Tarbell Casette interface
board, VDB-A Video Terminal 5-100
card, Jade Z-BO (actually Ithica Z-BO) and
an Ithica Audio board with the working
mod's on it, and the Xitex SCT-100 Single
Card Video Terminal.

Right now I am in the final stages of
construction on a ZAP-BO microcom
puter. This is being built from Steve
Ciarcia's book "Build Your Own Z-80
Computer" <Byte Books, 1981). You
should have this in your offerings, it is of
great interest to some, if not many, of
your readers. The circuit he uses was the
winner in a competition of four different
possibilities.

What was needed was a single board
controller/computer. It is to serve as a
data logger, and whatever else comes to
mind. For several years I have been
trying to find a "public domain com
puter" sufficient for a beginning student
to wire wrap and use for some significant
purpose. There are simpler solutions to
the problem (such as the 8748 single chip
microcomputer>. However, this Z-80
board has some extreme advantages.
First, all of the software will be upward
compatible (the next step up might be a
Little Board*). Second, all lines off the
CPU are buffered with the expectation of
adding odd-ball devices to the exterior.
Third, there are two 8-bit parallel ports
(input) and an 8-bit output port, with an
optional &8-232 serial port. To make the
projects initially useful, it will be an en-

(Continued on page 50)

Reader Feedback
I am writing in' response to your

request for reader feedback.
I feel that TCJ is straying away from

my needs. A magazine that fullfills the
goals as stated in the Editor's Page in
Volwne 1, Nwnber 1. is exactly what I
need. Why not pick a project, for exam
ple your NC controlled milling machine
project, and carry it through to a useful
end? Where existing hardware is
available at affordable hobbiest prices,
use it, otherwise build it. Where suitable
software is available, use it, otherwise
write it.

Don't turn the magazine into a
generalized software magazine with too
many articles like "Affordable C Com
pilers" and "Concurrent Multitasking."
For that kind of information I subscribe
to Dr. Dobbs Journal of Software Tools.

Don't turn into a computer industry
"news" magazine with too many articles
like "Inside AMPRO Computers" BYTE
magaine's subscription gives me that.

While I enjoyed all the above articles, I
would rather have read them in
magazines that I consider more ap
propiate for them.

C.D.M.
Editor's Note: Reader's feedback is

VERY important, and we encourage
every reader to send us a list by mail or
on the BBS describing the four subjects
that they would like to have covered in
future articles.

A Computer Builder
Issue #26 just arrived and I read it

cover to cover. Ironically, last week
some back issues of TCJ and "The Big
One" (you know, the magazine with 300
pages of advertising, been around for ten
years) arrived. I just threw away several
years worth of old computer magazines,
and comparing the two which arrived on
the same day, I found what was missing
in computer literature. I sincerely hope
you can keep up what you have so

The Computer Journal/Issue #127 35

A Tutor Program for Forth
Writing a Forth Tutor in Forth

by Bill Kibler

•••****.*****••••**.**•••••***•••••••••**•••••***•••*.******.***
•••••••••••••*•••••••*••••••••••••••••••••••••••••••••**••••••••

(INTRO TEXT FOR SCREEN ZERO BDK112186).*•••**......**.********••• **••••••••••••••••••••••**••**•• it*.***
***** •••*****••****** ••*********•••****••••********•••***._****.
••••••••••••••**.*****.**.**•••••****.*****•••••****************

DISPLAY (DISPLAY SCREEN OF TEXT)
1 ?ENOUGH L/SCR 1

DO 5 SPACES
DUP BLOCK I C/L • + C/l

TUCK PAD SWAP CMOVE PAD SWAP (>TYPE WITHOUT THE TYPE
o ?DO DUP Ci LSSK EMIT 1+ LOOP DROP TYPE WITH LSSK
CR KEY? ?LEAVE LOOP DROP

-->

go get screens of information - gotutor tutor bdk120186)
WTPRT 20 SPACES ." USE SPACE BAR FOR NEXT SCREEN" ,
ESCCHK DUP 27 = IF 1 ETUTOR I 32 THEN; (SET ESC FLAG
WAIT WTPRT 13 EMIT (PRINT THEN CR WITHOUT LF)

BEGIN KEY ESCCHK 32 = UNTIL ;(LOOP TIL SPACE KEY

GOTUTOR (DISPLAYS SCREEN ON STACK THEN WAITS
CR DUP SCR I 15 SPACES .SCR CR
BEGIN DISPLAY WAIT NTUTOR i 1 + DUP
DUP NTUTOR I 1 ETUTOR i = UNTIL CR CR 15 SPACES

" REPT = REPEAT LAST LESSON ••• GET = NEXT LESSON "CR CR

TUTOR (STORE SCREEN POINTERS THEN GOTUTOR
o ETUTOR !

OUP DUP STUTOR ! NTUTOR ! GOTUTOR ;

••••••
••••••
••••••
••••••
••••••
**_...... -
••••••
••••••
••••••
••••••

bdk120186)

THEN ; (CHECK FOR SS)

TUTOR.BLK

TUTOR.BLK

ALL Commercial rights reserved

F83 TUTOR AND HELP PROGRAM
F83 TUTOR AND HELP PROGRAM

Written by BI I I Kibler
PO BOX 487 Cedarvi lie, CA 96104

DUP 36 = IF 1 ETUTOR Il$$K

SCR 112

SCR #1

SCR #0

TUTOR.BLK

(LOAD BLOO< AND START OF TUTOR PROGRAM
(variables and display routines)
VAR IABLE ETUTOR (END 0 ISPLAY ING TUTOR SCREENS)
VARIABLE STUTOR (BEGINING SCREEN OF CURRENT GROUP
VARIABLE NTUTOR (NEXT TUTOR SCREEN OF GROUP)

•••••
•••**
...***
*.***......
*****...............
•••••......

Over the past few months I have
been working on tutor programs and
produced one for a computer class using
BASIC. The program just presented
menus and then checked for keyboard
input. Next it jumped to a given line and
ran the code. The code in this case was
text statements and took forever to en
ter. As far as program statements I used
both "ON X GOTO" and "IF..THEN"
statements. My overall feelings about
the program was that it involved too
much work for too little output. Needing
to do another tutor program and also
wanting to do something in Forth, I
decided to try a tutor program using F83.

F83 is the most current version of the
FORTH 83 standard and is available both
commercially and in public domain. F83
has several extra features and is quite an
improvement over previous versions of
Forth. People who have used other ver
sions of Forth find F83 to be a real
challenge to learn (same words new
meanings>. People who have not used
Forth previously are usually lost im
mediately after the prompt. I figured I
needed a tutor and help program that
would be available after the prompt. Af
ter I started writing the program I was
amazed at how easy and how fast I was
able to write the mechanics of the
program.

I spent about two days thinking about
how I wanted information moved and
displayed, and then about one hour
generating screens to do it. I only had one
time in which any code went south for the
winter, other than that it was very
painless. Although this program is rather
simple, involving defining barely ten
words, it has made a real convert of me.
Compared to the tutor program I wrote
in BASIC, this was a breeze to write and
will work many times better.

-->

INITIALIZE AND START THE LOOPS •• GET ••REPT ••

GET (GO GET NEXT GROUP OF SCREENS
NTUTOR i TUTOR

TUTOR.BLK
The program has three variables

which keep track of the current screen.
Forth stores all information in screens of
1024 characters each. This gives a dislay

SCR #3 TUTOR.BLK

BDK112586)

38 The Computer Journal/Issue 1127

: PRTSCR CR ." CURRENT GET SCREEN IS " NTUTOR §

CR ." REPT SCREEN OF INFORMATION IS " STU TOR @ • CR

REPT (GO BACK AND REPEAT SET OF SCREENS
STU TOR § TUTOR

START-TUTOR (START WITH FIRST SCREEN OF TUTOR
10 TUTOR

(second intro screen with list of words... bdk120186)
the chapter number for the area of help needed. Typing ESC key
will exit the screens and return to the system prompt. GET will
display next chapter of information, whi Ie REPT wi I I start
with the first screen of the chapter again. START-TUTOR wil I
start with the first chapter. Display wi I I pause unti I
SPACE BAR is pressed...... NEW F83 WORDS •••••

This program is intend to help beginners and old FORTH users
alike. The screens contain information on FORTH-83 and are
related to the recomended book " STARTING FORTH" by Leo Brodie
which can be used as a textbook with this program. Each chapter
or series of screens is organized to present the words used in
the chapter first in a glossary form. Old timmers wi I I find this
glossary important to see the differences between F83 and other
versions. Typing HELP wil I repeat these screens, then typing

Conclusion.
In using other tutor programs I have

found them both difficult to use and im
possible to fit my needs. I found most
users either know too little or too much to
make proper use of the program's infor-

of 60 characters by 16 rows, which at first
I felt too small for the tutor program. Af
ter generating some text I found the size
actually to be a very nice presentation.
The borders and display should be usable
on any machine, one of Forth's strong
points. The other words merely set which
screens to load and where you started.
The only major word I defined was ac
tually modifiying the Forth LIST word.
Normally using LIST will display a
screen with each line numbered, and
with line 0containing the origination date
and the title. I wanted the starting title
and no line 0 or line numbers. What I did
was reproduce the original F83 LIST
definition and then remove or rearrange
the information to get the desired results.
I made one mistake during this process
which sent the machine into the
operating system. but I had saved each
screen to disk and only had to reboot to
make corrections and try again.

The first word you can use is HELP,
which gives you an introductory set of
screens to the program. This introduc
tion gives you some of F83's words both
in the tutor program and regular F83.
The "$$" means the end of a series of
screens and will drop the program back
into F83 as indicated by the "OK" prom
pt. "REPT" will repeat the series of
screens again, while "GET" will start
the next set of screens. Eliminating the
line 0and some extra returns enabled the
next screen's text to display immediately
after the first (after you hit a space bar).
"ESC" will terminate the displaying of
screens, but "GET" will start where you
left off. "PRTSCR" will tell you what
each of the two variables contains (the
screen pointers GET & REPT).

To enter text, you use the built in F83
editor and start each screen with "0
NEW". This will allow you to enter text
one line after the other, while editing
previous lines will require you looking up
the commands until you get used to
them. Now that I am getting used to the
commands I have found the editor to be
OK, especially when you consider it is
available at all times. I am planning on
writing the tutor screens along the lines
of Leo Brodies "Starting Forth", but felt
the idea of getting tutor programs out
there more important than the text itself.

bdk120186)

BDK 112186)

TUTOR.BLK

TUTOR.BLK

TUTOR.BLK

(GIVE INTRO MESSAGE
6 TUTOR

PRINT SCREENS FOR TUTOR INFORMATION •••

FORTH-83 TUTOR PROGRAM AND HELP SCREENS
WRITTEN BY BILL KIBLER

NOV/DEC 1986
ALL COMMERCIAL RIGHTS RESERVED

DEFINING MODULES OF INFORMATION •••••

HELP

CHPI 10 TUTOR
CHP2 20 TUTOR
CHP3 30 TUTOR
CHP4 40 TUTOR
CHP5 50 TUTOR
CHP6 60 TUTOR
CHP7 70 TUTOR
CHP8 80 TUTOR
CHP9 90 TUTOR
CHP10 100 TUTOR
CHP11 110 TUTOR
CHP12 120 TUTOR

-->

SCR #5 TUTOR.BLK

MORE ROOM FOR LESSON WORDS •••• bdk120186)

GLOS 130 TUTOR ;

SCR #4

: HELP

SCR 1/6

SCR 17

The Computer Journal/Issue 1127 37

GET = next chapter REPT = begin chapter again
HELP = repeat these screens START-TUTOR = start dt CHPl
SPACE BAR = next screen ESC = stops display
PRTSCR = GET and REPT pointers

Th~ tJI IJwing words are lmport~nt uti lities in F83 and may be
dltt~~dn' from previous versions. WORDS wi I I display ~ list of
.53 .o~as used. OPEN ~I lows use of an existing fi Ie, EXTEND is
u~eC to ~da screens, ~nd CREATE is used for making a new fi Ie.
INOL~ jisplays a list of line 0, use 1 20 INDEX to list
scr~ns 1 to 20. 1 30 SHOW wi I I print 6 screens to a page on
yo~r ~rinter in condensed mode (use' EPSON IS INIT-PR for
~S0n printers). 1 30 TRIAD Rrints three to a page if condensed
pri~t is not avai lable. 1 30 SHADOW SHOW wi I I print both the

(THIRJ PRINT SCREEN OF TUTOR INFORMATION..... bdk120l86)
regular screens on the left side and the Information screen on
the rignt side of each page. SEE xxxx disassembles the word
XXXX, .hi Ie VIEW wi I I open the source fi Ie (on A: drive) and
I ist the screen It is in. VOCS wi I I I ist the vocabularies in
th~ dictionary, whi Ie ORDER displays the path of the directory
sed~ch. Use DOS WORDS to see a list of the DOS dictionary words.
CAPACITY wi I I print the number of screens in a open fi Ie. A L
wi I I toggle between the shadow and the source screens. N L wi I I
display the next screen, L wi II I ist current screen, B L wi II
I ist previous screen. 1 EDIT wi I I invoke the line editor with
screen 1 ready to edit. 0 NEW wi I I start editing at line 0 and
and al low the text to be entered one line after the other. HEX
100 80 DUMP wi I I do a hex dump of memory location lOOh to l80h.
DEBUG LIST wi I I al low stepping through I ist when used next as
in 1 LIST.

mation. A typical problem is getting into
and out of lessons. Many times you can
get out but must start all over with lesson
one again. Arecent tutor program I must
use makes you enter information at each
prompt before you can continue on. This
is not acceptable as the only information
I want is at the end of each lesson (a
review and glossary). My Forth tutor
program gives you many options, from
printing an index (or the whole thing) to
LISTing a single screen. After each
lesson you are given the Forth "OK"
prompt and can enter any F83 word, try
new words, run samples from the lesson,
or leave F83 by going "BYE".

I found using Forth to be easy and
simple. I use many different systems and
CPUs which started me on Forth and will
be the only language I could use on all the
units. Currently I have to learn
everything all over again when ever I
change systems, while learning Forth

,,'

8-bit Developments
There is still a lot of activity in the 8-bit

domain with z.ao and HD64180 single
board computers selling well. There are
also a lot of 8-bitters still in use and they
are ideal tools for learning about inter
facing and how operating systems work.

Toshiba and Zilog should both know
how many 8-bit chips are being sold, and
they have just announced new Z-80
family devices which means that they
plan on producing a lot more of them.

Toshiba has introduced a line of Ap
plication Specific Standard Parts
(ASSPs) which include a CMOS Z-80 CPU
with peripheral functions on one chip.
Their Z84COllAF which combines the z
OO with a clock generator controller, a
counter timer, and five 8-bit parallel I/O
ports comes in a 100 pin flat pack in 6 or 8
MHz with 10 MHz promised. The I/O por
ts are bit enabled and each port bit can
be used as input or output. The
Z84C013AT is designed for dedicated
communications with serial 1/0, and the
Z84COI5AT is designed for com
munications with parallel I/O.

Zilog has announced their Z84C80
CMOS chip which can replace 70 to 100
SSI/MSI chips in a Z-80 system, and in·

Editor

(Continued from page 3)

make the minor revisions so that a
program does what we want it to do. My
first choice is a program which includes
the source, and my second choice is a
program which I can figure out how to
patch.

Clark Calkins' method of disassem
bling programs in order to provide
modifiable source code is very important
for those of us who are working with
CP1M programs which are not supported
because of the manufacturer's neglect or
the fact that they are out of business, and
we are very thankful that Clark is taking
the time to share his knowledge with us
in this first article of a series. I would like
to see source code generators for
popular, but undocumented, CBIOSs,
disk format programs, boot PROMs, etc.
If you have a likely candidate and would
be willing to cooperate in a group effort
(we can't expect Clark to do all this work
for us), drop me a note or post a message
on our BBS. If there is enough interest
we'll organize a SIG.

While talking about source code, note
that Hawthorne's 68000 operating system
includes the source code plus the com
pilier for the language in which it is writ
ten.

bdk120l86)

ss
would allow me to learn only one system.
F83 contains most functions you might
consider when developing a program or
changing a system, and as such could be
the solution to efficiently using many
systems. Give it a try. •

TUTOR WORDS
CHP2 fundamentals
CHP4 editor commands
CHP6 fixed point operations
CHP8 number types
CHP10= F83 structure
CHP12= extensions

glossary of F83 words

TUTOR.BLK

TUTOR.BLK

intro screen with list of words •••

introduction
RPN and STACK
conditionals, nests
loops (& nested)
var. canst. arrays
Input/Output
alphabetical

I ~s t

CHPl
CHP3
CHP5
CHP7
CHP9
CHP11=
GLOS =

SCR I~

SCR #9

38 The Computer Journal/Issue /127

-.."'\- '
(714) 781·0252)

~ight Writer '9795

REPORT WRITING

• '~'~.,I""..::' (',', ,SI€", S ~f?S'c;~

:"·1 ;,. :"'.~·O"""J':l<;'~~' :::.-::

They even have an on-line bulletin board
to list some of their latest bargains. See
their ads in this issue for some great
deals including the Morrow Micro
Decision mother board which makes a
great single board computer.•

Forth Fan
Don't let us down! I still wish there

were some Forth articles in TCJ, but I'll
be content as long as you continue to sup
port CP/M as well as MS-DOS.

I know I'm not alone when I say that
having a MS-DOS machine hasn't made
me want to trash my CP/M box(es).

G.S.

Editor's Note: We haven't turned down
any Forth articles, we just haven't
received many. See Kibler's TUTOR ar
ticle in this issue, and tell potential Forth
authors to contact us. •

2200 Business Way, Suite 207
Riverside, CA 92501 USA

i PlOTPllO •7295
) • 't"', ..". :..,-:c- - -'-.;I . 'n, ,'C"':'... ',>

'7295 • y,,- ".
TEKCALC '7295

• • ,'.' .ir (~ ..,";',.'

DCNAP

•• ',".,.., "J

\7295SPP

STAP

mation on what you are doing, and share
your developments with others.

Computer Parts
In the previous issue, I mentioned that

the power supply burned out in one of our
Morrow S-100 systems. I was concerned
about finding a replacement since
Morrow is out of business, but I located
Silicon Valley Surplus (4401 Oakport St.,
Oakland, CA 94601, phone 415-261-4662)
who obtained much of Morrow's parts
inventory. A replacement supply was
only $25, and in addition I bought a spare
DJDMA disk controller board (complete
with the latest ROM) for only $45. The
people I talked to there were very
pleasant, helpful, and knowledgeable.

Feedback Control
The article on Feedback Control

Systems by BV Engineering is a good
example of both engineering software
and a very important subject for any
type of control system.

Feedback control can be applied to
numeric machining, robotics, tem
perature control - and even magazine
publishing. To keep TCJ steering down
the right path we need to know what the
readers want and how we are deviating
from the path. We have renamed the the
readers letter column "FEEDBACK" to
better describe Its purpose, which is for
the readers to ask questions, respond
with answers, talk about what's hap
pening in the computer field; and most
importantly, where TCJ should be going,
Take time to write or to post a message
onourBBS.

(ria'r'l Engineering
l,-~ ProfeSSional Software

cludes a clock oscillator, watchdog
timer, 28500 bus interface, dynamic
RAM interface that handles 64K and
256K memory chips, and decodes the in
struction set which permits code and
data to be separated into different ad
dress spaces and doubles memory'space.

BD Software is now shipping revision
1.6 of their C compiler. This revision in
cludes the RED editor (with source code)
which reacts interactively with the com
piler for easy error corrections, the buf
fered I/O functions have been changed so
that they are now K&R compatible
(programs written for V1.5 will have to
be modified). the compiler error detec
tion and diagnosis have been improved,
plus there are numerous other im
provements. Note that the source code
for all the library functions is included.
The BDS C compiler has been my first
choice as a programming language for
writing text filters and drivers for our
phototypesetter, and the new version is
even better.

Another entry is Borland's 8-bit Turbo
Modula-Z compiler which is being
distributed by Echelon and Micromint,
and will be very important for people
writing non-trivial programs but who
don't like C. Turbo Modula-Z has a lot of
the familiar syntax of Turbo Pascal, plus
separate compilation and library
facilities similar to C. Interfacing to
assembly routines has also been greatly
improved compared to Turbo Pascal, as
Turbo Modula-2 has a CODE statement
which reads in an assembly language
.COM file during compilation. The
assembly routine must be relocatable
(only relative jumps) and its length must
be included in the first two byte, and this
is all spelled out in the manual. It also in
cludes type ahd version checking across
compilation units, and can be used for
large program development and for
operating system concepts like con
currency and interrupt handling,

I feel that while a lot of work is still
being done in BASIC, it should be
replaced by Turbo Pascal for trivial
programs. I also feel that Turbo Pascal
should be replaced by C or Trobo
Modula-2 plus assembler for non-trivial
programs. I didn't find anything about
producing ROMabie code in the Turbo
Modula-2 manual, so HDS C may have an
advantage there.

TCJ intends to support both BDS C and
Turbo Modula-2, and is especially in
terested in acquiring extended library
modules to be published in-the magazine
and posted on the BBS. Send us infor-

The Computer Journal/Issue 1127 38

Disk Parameters
Modifying the CP/M Disk Parameter Block for Foreign Formats

by C. Thomas Hilton

A number of our readers have asked for more information
on tailoring the CPIMIt BIOS, and specifically on how to modify
the BIOS in order to read other disk formats. Information on
writing to the disk is very hardware specific, but there are some
generalities and the information on the AMPRO Little Boardlt

will serve as a starting place for those with other systems.
We must keep in mind the basic structure of CP1M, or CP1M

derived operating systems. The CCP interfaces with the human
operator, and relies upon the FDOS, (Floppy Disk Operating
System), segment for all hardware interface. The FDOS
segment deals with all hardware requests in a "sentence" type
format. It does not however have much knowledge about what
the system hardware looks like. The BIOS, <Basic Input/Output
System) is the only segment which deals directly with the
system hardware. Because the other segments of the CP1M
system require no hardware specific information CP1M may be
run on nearly any manufacturer's hardware. This is the purpose
of the CP/M concept, and why we don't have "compatibility"
problems the way the 16 bit systems do.

Less than a fifth of a standard BIOS is concerned with tasks
not associated with disk management. When we begin to think of
disk management we are concerned with the entire BIOS and
cannot simply isolate a given segment and work with it. Far too
many concepts, or 'small details' are interrelated, and these
'small details' form the dominate four fifths of the BIOS.

Getting Started
From here on we will refer to a generic operating system as

the "DOS", which is assumed to be ZRDOS, CP1M, Hermit DOS,
or any other CP1M derived operating system.

The DOS can manage nearly any type of disk storage device
we care to connect to the system. These devices may range from
a single density 5 inch drive to a quad density, or for the little
AMPRO, 80 megabytes of hard drive storage. Wait just a
minute! Didn't he just say the DOS segment has little knowledge
of the disk hardware? Yes I did. There isn't really a conflict of
concepts. In beginning we will have to view the disk system as
the DOS sees it, and work our way deeper into the concept as we
go. Any other route in our quest would lead to miles upon miles
of dull theory. I would rather do than read, wouldn't you?

Of all the thousands of details concerned with disk
management only a few are of real concern to the DOS segment.
The DOS relies upon the BIOS to take care of these details. The
DOS asks the BIOS to provide it with a set of "parameters"
describing the disk device. Many times, as we attempt to inter
face new technologies with standard, and aging systems, (all
the better tc upgrade them as we are doing here), the BIOS will
lie to the DOS segment about the disk drive. What the DOS
doesn't know won't hurt it. The most common occurence of
misinformation is about hard-drives, which were not common
when CP1M was written.

Primary Disk Parameters - Some Theory
The DOS asks the BIOS for parameters which "describe"

what the mass storage device looks like. We will cover these
parameters several times, with a slightly different perspective
each time. We have to begin somewhere, and what's good for the
DOS is not always good for the BIOS.

The size of the blocks of disk space used by the concerned
format is a trade-off decided upon by the author of the BIOS. It is
said that "He who writes the BIOS owns the company." There
are many reasons why this is true and we will discover them.

The allocation block may assume only a limited number of
sizes to remain compatible with the DOS. Of these limited
values at least one is considered obsolete. All possible values are
related to other disk parameters. The size of the allocation
block, simply expressed for now, is the amount of disk space
used in all transactions. A better way of putting it is that if a two
character file shows up in the directory as using 2K of disk space
then you may assume your system uses a 2K allocation block
size. The size of the allocation block is a great headache for the
format designer. File space is allocated only in terms of blocks.
In the two character file example there is a large waste of disk
space. We can expect that at least half of the last block in a given
file will be wasted. This waste factor is what prompted the
LU.COM and NULU.COM library utilities to be created - they
free up much of this wasted space within the individual files.

Now then, it seems logical that the larger the allocation
block the greater the amount of space which will be wasted. This
is a valid assumption. The considerations are the size of the disk
being used, and the number of files likely to be placed upon it. It
would follow that the lower the,disk capacity and the greater the
number of files to be placed upon the disk, the smaller the
allocation block should be. It is not that simple, even if we knew
for certain what kinds of drives those darned TCJ readers would
attempt to connect to our system!

The DOS "sees" the storage device in terms of allocation
blocks, which we will refer to only as "blocks" from here on. It
knows only how many blocks the disk will hold. The concepts of
sectors and tracks it leaves to the BIOS to figure out. The total
number of blocks available on the disk allows a "map" of the
disk, in allocation blocks, to be built.

If the disk is a small one of less than 257 blocks, the map for
the entire disk may be referenced in a single byte. If the disk is a
large one we will have to use a word, or two bytes, to map the
disk. To avoid ambiguity in map making, a two byte map should
hold a predefined set of numbers. The size of the allocation block
therefore directly effects the production of a map of the disk.
The disk capacity and the block size determine how many block
numbers will fit in the data map of the disk. If we make the
number of blocks less than 256, a single byte, then the block size
must be large, a single directory entry can command more disk
space, and we will waste more disk space, (because of the large

The Computer Journal/Issue #127

BOOKSHELFTM S(l~i(lj 700
Fast, ComPKt, Hish Quality, """'SC CP/M SptcIII

Priced from
$895.00

10MB System
Only $1645.00

• Comprene~ Software Included:

• Enhanced CP/M operating system
WIth ZCPR3

• Word processing, spreaclsl1eet,
relational database, spellIng
ched<er, and data encrypt!
decrypt (T/IWU<EIlIII")

• Operator-lnendly shells; Menu,
Friendly"

• Read/write and format dozens of
floppy formats (IBM pcoos,
KAYPRO, 0S80RNE, MORROW...)

• Menu-Oased system cu5tomization

system With ZCPR3
• Read/write/format dozens of

noppy formats (IBM PC-DOS,
I(AYPRO, OSBORNE. MORROW)

• /w\enu..oased sY5tem customlzatlon
• Operator-friendly MENU snell

• OPTIONS,

• Source Code

• Turt>oDOS

• ZRDOS
• Hard disk expansion to 60

megabytes
• SCSI/P\.US'· multi-master I/O
~nslonbus

• Local Area Network
• STD Bus Adapter

• Ready-t~ profesSIOnal CP/M
computer system

• Worlcs with any RS232C ASCII
terminal (not Included)

• NetworIt av",1abIe
• Compact 7.3 x6.5 x 10.5 inches,

12.5 pounds, all-metal construction

• ~I and ~tile:

• Based on utUe Board
sing~ computer

• One or two 400 or 800 KB floppy
drives

• 1CM\ll internal hard disk dnve
option

IllS1..mllIS

~ FIoCTOIlW. SA, (I) 41-0018, M1CReXOMPIIlUS, (613) 500-0628
lUt ~408 _ CfNlllE -.ua, CNC~ lL'\O£R lJll,f.,

EL£CTRONIQUE l£W'DEl.JI, (041) 23-4S41, (41) 'l6i-~6ll, lUt041-0J64_
lUt 42621 CAMADA: OYNACOMP OAHIIIT, (03) 6/>20-20, lUt 43558
COMPUTtR S'I5lEMS UD. (604) 872-7737 --. 5YMMEl1lIC OY, (0) ~322,
--.QI.lN<T SYSTEMS, lUt 121394-.ALPHA~
(01) 25~23, lUt 946240 1lEF,19003131 UD. (3) 49-16-95, lUt 341667_
IIlAMCZ: EGM.-, (I) 502-1800, lUt 620893 All AltTA, (08) 5+20-20, lUt 13702 USo\l
_ XENIOS INFQRMI\OCA, S9J.0822, CONtOCT .wI9.O COMPlJ19S INC.,
lUt S03l>4--.ASP ~ (41S)96~= 4940302

ISM", 11IM CClfI).; ISO""", ZiIo9. Inc.; CP/M",
QigItaI -..-en; ICl'R3~& ZRIlOS~.

E<lWU\ Inc.; 1Urtlo 005'>, -.. 2000,
Inc.; TlMMIIt.~, T/_eo.

CP/M 2.2
INCLUDED

Little Board™ •••• $149
The World's Least Expensive C'/M Ensine

• 4 MHZ Z80A CPU, 041< RIW, Z80A
ac, 4-32K EPROM

• Mln,/Micro Floppy Controller
(1-4 DriVes, S",gle/Double DenSity,
1-2 Sided 40/80 track)

• 2 RS232C Serial Ports (75-9600 baud
& 75-38, 400 bdud), 1 Centronics
PrInter Port

• Power ReqUirement, -51/0(at .75A;
-121/0(at05A / On board -1 'N
converter

• Only 5.75 x 7.75 ,nches, mounts
dltectly to a 5-1 /4' disk dnve

• ComprehensIVe Software Included:
• Enhanced CP/M 2.2 operating

block size>.
The block size and disk capacity determine the amount of

space which can be described by a single directory entry. This
amount of disk space controlled by a directory entry is called a
"data map." The amount of sM-ce controlled by each entry in
the data map will be either eight or sixteen times the size of an
allocation block. This is a design rule. This number is also
represented by a term called a "logical extent" which will
always be a multiple of 16.384. This is another design rule. There
is a case where these rules could be violated. If the block size
were 1K and the disk was so small that there were less than 256
blocks. then a directory entry could command only 8K of disk
space. This is not a usable combination of disk parameters. This
combination is not allowed in modern design concepts. The use
of 1K allocation blocks may only be used with disks of less than
256K of data, such as "fruit-loop" computers and other low-end
consumer toys.

The block size also effects the relationship between the
logical extent and the physical extent, (the actual amount of
space commanded by a single directory entry). The larger the
physical extent, the fewer the number of directory entries which
will be required to describe a complete file. The size of the
physical extent is more than a theoretical design concept as it
directly affects system performance. It takes time to locate and
"open" a new extent; a seek of the disk head back to the direc
tory track is required. It follows that the larger the physical ex
tent the less time would be required to process a large file. The
time it takes to find data on the disk is important when we begin
to think about how the system will perform with random access
files. But, as we have briefly discussed, the larger the extent, or
block size, the more wasted space we have on the disk.

Another consideration about the size of the allocation block
is the relationship to the number of directory entries it takes to
describe the entire disk. We must consider two extremes of disk
space management. On the one hand we must consider that
someone may place all his files in a library and the entire disk
may be filled with only one file. A single directory entry
therefore must be capable of describing the entire disk, if it has
to. If the directory were constructed any smaller than that
which could command the entire disk ·space it would not be
possible to use the entire disk. On the other hand the disk may be
filled with two character files commanding a single block. There
must be enough directory entries to handle the load. From what
we already know the smaller the block size the more directory
entries would be required to describe the entire disk.

Just to make things interesting let's establish the rule that
there cannot be more than 16 allocation blocks used by the direc
tory. Yes, you had better dust off that old calculator and send
out for another bottle of you favorite headache reliever! The
basic rule of thumb here is that the smaller the block size the
larger the directory must be. It would also be logical to think
that the size of the disk would playa major role in determining
the allocation block size since it affects so many "small" con
siderations.

The DOS requires the BIOS to tell it the number of blocks a
disk will hold. This figure represents the capacity of the disk.
When all the blocks are assigned to a directory entry the disk is
full, end of story.

Right from the start I am going to run afoul of CP/M pun
dits. The parameter I refer to as "Records per Track" is
generally called "Sectors per Track." What it refers to is the
number of 128 byte data segments per track. Sectors have not
been 128 bytes per track since the 8080 processor was new. So,

The Computer Journal/Issue 1127
COMPUTERS. INCORPORATED

67EastE~_.• Mountain'-'ew,CA94041. ('15)962~O. mEX.940302

FIgure One: The Standard Disk Parameter Block

The Disk Parameter Block
In actual application the parameters we have just discussed

are returned to us in a fifteen byte data structure called the
"Disk Parameter Block," which we will refer to as the "DPB"
from here on. The address of the DPB is returned from the BIOS
using DOS function call #31. The structure of the DPB is shown
in Figure One.

we of the enlightened "New Wave of Eight Bit System Designs"
will tell it like it is and refer to this parameter as records per
track. Each RECORD we will determine to consist of 128 bytes
of user data. (

The DOS doesn't know anything about sectors and tracks,
nor their size. This is the realm of the BIOS where only those
with at least a brown wizard's robe with gold stars might travel.
However, the BIOS demands to speak in the terminology of sec
tors and tracks so the DOS must fake it. Knowing the number of
standard RECORDS per track it can do some fancy math
calculations and tell the BIOS what it needs to know to return a
specific record from the disk's surface. This is not as easy as one
would suspect as records are laid down anywhere there is space,
seldom one after the other.

The first byte in the DPB is the RECORDS per track
parameter value. Under CP/M 1.4 there were 128 bytes per sec
tor only. This is why CP/M 1.4 is no longer in use. Modern
technology allows several different values of SECTORS per
track, with 128 bytes per record within a given sector. This value
represents the number of RECORDS per track, and has nothing
to do with the number of physical sectors per track. This is
where the distinction lies, and must be recognized if we are to
battle confusion. U you think in terms of sectors, with every sec
tor being 128 bytes, then nothing will make sense from here on.
Think in terms of 128 byte RECORDS only!

The next entry in the DPB refers to the BLOCK SHIFT
FACTOR. Recall I mentioned the DOS doesn't know anything
about sectors and tracks. This is the first of several data which
allow the DOS to calculate where a given record is upon the disk,
and demand it of the BIOS. The block shift value is the number
of times a given record's number should be logically shifted to
the right in a 16 bit register to obtain its allocation block num
ber. The size of the allocation block may be determined by
initializing a 16 bit register with 128 and shifting this value
LEFT the number of times in the BSH byte.

The BSH is followed by the BLOCK MASK byte which con
tains a value which, if logically ANDed with a record number
will produce the RELATIVE NUMBER of the record within its
allocation block.

The EXTENT MASK field of the DPB shows the relationship
between the physical and the logical extent. The logical extent is
derived from dividing the record number by 128. The physical

extent may also be determined from the extent mask, but it is
generally easier to get the record number, shift it right BSH
times, and then divide the result by eight or sixteen, depending
upon the number of blocks in the data map. The DSM, or
DISK BLOCK MAXIMUM word reveals the highest possible
allocation block number available for the disk of concern.
Remember that in computers the number zero is the first num
ber, and a valid number. Hence the number of allocation blocks,
or the highest allocation block number, is one more than the
value in the DSM. The size of the disk may be computed by
initializing a 16 bit register with the value of the DSM+ 1, and
double that value BSH-3 times. The number of records may be
determined by doubling the result BSH times. U you are slick, as
the byte count will overflow a 16 bit register, the disk size in
bytes may be determined by DSM+ 1doubled BSH+7 times.

The maximum number of directory entries, the DIREC
TORY NUMBER+1, contains the maximum number of direc
tory entries, plus one, contained upon the concerned disk. This is
a word sized parameter, and indicates that the DOS is able to
support up to 256 directory entries. This large number of direc
tory entries is generally found only in hard disk systems.

The ALV, or INITIAL ALLOCATION VECTOR is a word
sized parameter which the DOS maintains for each "active"
disk. This word is a string of DSM+ 1bits in length in which each
bit refers to an allocation block. If the bit is "high," a logical
"1," then the block is in use. Each byte in the initial ALV may be
used to build a full sized allocation vector for the concerned disk,
with these bytes becoming the "leader bytes" for the vector.
Some number of the ALV bits will be set high to permanently
reserve the directory area of the disk.

Next on the list is the CKS word, which is the DIRECTORY
CHECK SIZE parameter. This word sized parameter is used by
the DOS to see if the disk on the concerned drive has been
changed by the user since the last "warm boot." U the disk is
determined to have been changed it is assigned a "read only"
status and we are given the all too familiar error message when
we try to write to it. If the CKS word is a zero value this "disk
has been changed" testing will not be done. This is the case only
in hard disk systems, or where the medium is assumed to be
"nonremovable." U the CKS value is not zero this word will be
given a value representing the number of records in the disk's
directory, or DRM+l/4. Directory entries are packed four to a
record.

The final entry in the DPB is the OFF word, or RESERVED
TRACKS OFFSET value of the concerned disk. This word tells
the DOS how many tracks are reserved for the operating
system. Knowing that some tracks are reserved the DOS will
add this offset to the track number it computes using the record
number and the RECORDS PER TRACK parameters of the
DPB. It may be interesting to note that the system tracks are
always the first tracks on the disk, hence the OFFset value poin
ts to the first byte :>f the directory area on the disk. The more
enlightened reader may wonder, at this juncture, why this is a
two byte field when only one or two tracks are normally reser
ved for system use. Well kind reader, the DOS is prepared to
handle 65K of reserved tracks, this is true. The reason this is
done is to allow the use of hard disk systems. U the medium is
continuous, of say 20 megabytes capacity, and CP/M allows a
maximum of eight megabytes per disk, how does one account
for the palm sized AMPRO's ability to support 88 megabytes of
disk storage? You are correct if you feel the offset value is used
to "lie" to the DOS segment. On the 20 megabyte Little Board I
use for writing it is not unusual to see TWO THOUSAND

NEW MEANING

RESERVED TRACKS

RECORDS PER TRACK

DISK BLOCK MAXIMUM
DIRECTORY NUMBER+l
ALV INITIAL ALV MAP

OLD MEANING

XX SPT SECTORS PER TRACK
X BSH BLOCK SHIFT FACTOR
X BLM BLOCK MASK
X EXM EXTENT MASK

XX DSM DISK SPACE MAXIMUM
XX DRM DIRECTORY MAXIMUM
XX ALO/ALl INITIAL ALLOCATION
XX CKS CHECK AREA SIZE
XX OFF TRACK OFFSET

BYTE NA/o£

42 The Computer Journal/Issue 1127

TRACKS reserved on LOGICAL DRIVE Dr This offset value is
used to partition a large hard disk into more bite sized portions
compatible with the various limitations of disk space
management. Adding 2000 tracks to a record number points to
the directory tracks on logical drive D of the hard disk. This is a
good way to find your way around the void of a large disk
system! The DOS assumes there are four physical disk drives,
A, B, C, and D, connected to the system. The BIOS knows there
is only one physical drive. What the DOS does not know will not
hurt it.

The Reality of the Situation
A full description of how to apply the variables we have just

discussed would be beyond the scope of what we wish to achieve,
and the design of each reader's disk would be different. Each
would make different trade-offs according to his needs,
opinions, phase of the moon, and other factors unmentionable in
print. The results of these decisions, the values placed in the
DPB, and the many algorithms which would be required to sup
port them would be called "DISK FORMATS," and each of them
would be incompatible with another's. Are you beginning to get
the picture on why there are so many different disk formats, and
why no one wishes to second guess the thoughts of the author of a
BIOS?

The BIOS is the only portion of the operating system which
speaks directly to the system hardware, and the only program,
user or otherwise, which should speak to the system hardware.
It would follow therefore that each BIOS is concerned only with
the specific disk controller chip chosen by the hardware
designer. It is also proper to assume, if you wished to physically
format a disk in any style other than that specified by the author
of the BIOS, you will be required to write your own algorithms to
deal with the hardware specific disk controller chip.
The AMPRO Emulator Disk Parameter Block

Turning your attention to LISTING ONE you will see
several DPB's such as we have been discussing. Three of these
segments describe the decisions made for disk format design by
the original author of the AMPRO BIOS. These decisions mark
the characteristic AMPRO format from all other combinations
of disk format design. FIGURE TWO shows the standard con
figurations of format design practice. We have far to go in a
short space. I will leave the study of the various examples for
your leisure time. .

Let us pay particular attention to the "E" disk parameter
block. It may be located by the label, "EPRAM." Before I con
verted to AMPRO systems I owned a Kaypro 4-84. The "E" disk
in the example is set to the Kaypro 4/10 format by default. I
traded in the Kaypro for a Televideo terminal. With most of my
software library in the Kaypro format, the default setting allows
direct access to my software.

Just above the "E" disk's DPB we will find a label entitled,
"TYPETAB," which means the disk TYPE TABLE. As if all the
different possible parameter values weren't enough to deal
with, we now have to deal with the physical characteristics of
the disk drive, and a few "small details" about how the alien
format designer reads, and writes, his disks. In the default type
table make note of the byte containing the value, "OE6H." The
value E6 describes the physical Kaypro disk format.

Each bit in the disk type table has a meaning as depicted in
the listing's chart. Bit seven defines whether the disk is single,
or double density.

Bit six dermes the number of sides the disk has, which also
dermes the number of heads the drive will have.

The Computer Journal/Issue '27

Bit five defines how the sector numbers are organized.
Some formats consider both sides of the disk as a single surface.
Sector numbers are numbered with the first sector on side one of
the disk, continuing on the other side. Other formats consider
each side of the disk as different with sector numbers defined as
•'side one, sector onel side two, sector one."

Bit four defines the "track count," which refers to the way
the disk is read. In some formats the disks are read down one
side of the disk and back up the other side. The alternative is to
read the disk down one side, return, switch side, and read down
the disk again.

The bit structure this far contains some obvious, and some
not so obvious information. That information which is not ob
vious will seldom be found in any of the target system's
technical data. It is one of many circumstances which make
dealing with alien disk formats frustrating.

Bits two and three define the size of the disk's allocation
block. The "E" disk supports four options of allocation size, 1K,
2K, 4K. and 8K. Other allocation sizes will require change of disk
handling algorithms.

Bits one and zero define the size of the sectors. Remember,
we are not speaking of 128 byte units! Those are records. Weare
referring to the physical size of the disk sector.

An examination of the "E" disk parameter block will show
that it is a standard DPB. Following the DPB is a group of con
stants which are called the "skew translation table."

This far our theory has been a logical one, with "many small
details" inferring that everything on the disk is in a neat order.
Think again, nothing comes this easy. il it did we would be
flooded with articles like these. The term, "skew" means that
consecutive groups of data are not placed on consecutive sectors
within a disk track. Data which should logically follow one
another are separated by some predefmed number of sectors.
Dropping a record every few sectors improves disk performan
ce. Disk access is already slow, and all tricks possible are used
to improve access times. The philosophy of the skew is that it
takes time for the processor to deal with data. This time factor is
such that the processor may not be fast enough to lay down
records as fast as the destination spot spins under the heads of
the drive. By spacing the sectors the processor "access win
dow" is made larger. The access window is designed to
eliminate an additional revolution of the disk for a missed sec
tor. In hard disk systems skew is called the "interleave" factor.

The DOS can determine if skew is used by calling the BIOS
function SELDSK, select disk, which returns the address of the
DISK PARAMETER HEADER. We will refer to the disk
parameter header as DPH from here on. DOS will check the fir
st word of the DPH to see if it is a zero value. il the value is zero
then no skew is used, and the record position calculated from the
record number represents the actual record position on the disk.
il the fIrst word of the DPH is not a zero value it will be the ad
dress of the skew table in the BIOS.

The algorithms which deal with the skew factor are often as
unique as the results of the other trade-off decisions made by the
author of the BIOS. il the disk uses skew the DOS will call the
BIOS function SECTRAN to translate the logical record position
into the physical record position. This table is required to
manage the skew factor of an alien disk, and that it is data we
must have to read, or write, an alien format.

We now at least know something of the parameters con
tained in the DPB, and have a basic understanding of the data
we must provide the "E" disk support algorithms. Fine, but
where do we get this information?

43

DEFB 4 ;block shl ft
OEFB 15 ;block _sk
DEFB 0 ;8l(tent _sk
OEFW J94 ;dlsk slz8 -1
OEFW 255 ;dlrectory IMl(
OEFB 240 ;alloc 0
DEFB 0 ;alloc I
DEFW 64 ;check size
OEFW 2 ;offset

XL TO: ;48 tpl skew table
OEFB 1,2,J,4,5,6,7,8,9,10

a cal I to bios function getedlsk returns the address of eparm. the type
;table entry Is returned as the value returned of the eporm -1. the translation
;table location Is defined os the returned value+15. the following definitions

== ;set the emulator disk as a kaypro 4/10, kaypro 84 series, as the default
NOTE: A lK BLOCK SIZE WITH MORE THAN 255 BLOCKS PER DISK IS AN ILLEGAL OPTION ;system to be emulated. drive b Is the default emulator drive. these values may
== ;be altered using the ampro multldsk.com utility.

t IFigure Two: Reosonable trode-offs of disk format design parameters.

BLOCK BLOCK BLOCK BLOCKS BLOCKS PER EXTENT LOGICAL EXTENT
SIZE SHIFT MASK PER 01 SK DATA MAP SIZE EXTENTS MASK
=a=======;==========;===================a==~========== ========================

1024 OJH om <256 16 16K 1 OOH
2048 04H OFH <256 16 J2K 2 01H

>255 8 16K 1 OOH
4096 05H lFH <256 16 64K 4 OJH

>255 8 J2K 2 OIH
8192 06H JFH <256 16 12BK 8 om

>255 8 64K 4 OJH
16J84 07H 7FH <256 16 256K 16 OFH

>255 8 128K 8 07H

DISKPRAM.ASM

LIsting Two: Tool To Determine Disk Par~ters.

DISKPRAM Intended use Is to determine the the values of the DISK PARAMETER
BLOCK and the SKEW TRANSLATION TABLE of a system allen to Ampro MULTIDSK
program. After the host systen parameters are are determined ESET may be
used to set up the E: drIve on the AMPRO system

DISKPRAM displays the disk parameter block and the skew translation table
maintained In the target bios In any selected system

l=double
l=double
l=contlnuous
l=down front, up back

01=2K 10=4K 11=8K
01=256 10=512 11=1024

O=slngle
O=slngle
O=same
O-down
OO"IK
00=128

7654J210
x

x
x

x
xx

xx
76543210

;dlsk type byte (kaypro 4-84 default)
;sec/trk
;b lock sh I ft
;block mask
;extent mask
;dlsk size -1
;dlrectory mox -1
;alloc 0
;alloc 1
;check size
;of fset
;default drive (drive b default value)
;translate table for emulator drive

O,I,2.J.4,5.6.7.8.9
10

4
OE6H
28H
4
OFH
1
OC4H
03FH
OCOH
o
16
I
1

Bit:
Density
Sides
Sector #'s
Trock count
Alloc unit
Sector size

Bit:
,
TYPETAB:

OEFS
DEFB

EPARM: OEFW
OEFB
DEFB
DEFB
OEFW
DEFW
DEFB
OEFB
DEFW
DEFW

EDSD: DEFB

XLTl: DEFB
DEFS

Listing One: AMPRO Standard ond Emulator Disk Parameter Blocks-
ORG BIOS+80H

DPBASE: DEFW XLTO,O,O,O
DEFW DIRBUF,DPARM,CSVO,ALVO
DEFW XLTO,O,O,O
DEFW DIRBUF,DPARM,CSV1,ALVI
DEFW XLTO,O,O,O
DEFW DIRBUF,DPARM,CSV2,ALV2
DEFW XLTO,O,O,O
DEFW DIRBUF,DPARM,CSVJ,ALVJ
DEFW XL Tl,O,O,O ;the e disk
DEFW DIRBUF,EPARM,CSV4,ALV4

,
SPARM: ;a single-sided ompro disk

DEFW 40 ;sec/trk
OEFB 4 ;b lock sh 1ft
DEFB 15 ;block mask
DEFB 1 ;extent mask
DEFW 94 ;dlsk sIze -1
DEFW 6J ;dlrectory max
DEFB 128 ;alloc 0
DEFB 0 ;olloc 1

-t DEFW 16 ;check size
::r DEFW 2 ;offsetCD

~ ;

3 DPARM: ;a double-sided ampro disk
'0 DEFW 40 ;sec/trk
c:: DEFB 4 ;b lock sh 1ft
~ DEFB 15 ;block mask
c- DEFB 1 ;extent mask
0
c:: DEFW 194 ;disk size -I
3 DEFW 127 ;dlrectory max
!!. DEFB 192 ;alloc 0- OEFB 0 ;alloc 1ii
'" DEFW 32 ;check sIze
c:: DEFW 2 ;offsetCD... ;
N DPARM96: ;96 tpl double sided.....

DEFW 40 ;sec/trk

~ ..

-f ' DISKPRAM is the combin~tlon of DPB.ASM ~nd SKEW.ASM by
=so ; Robert C. Kuhman, Sysop of the Cro's Nest RCP/M. LD DE,SPT ; m~ke dph v~lues prlnt~blec»
~

, CALL CH2
; Revisions: LD DE,BSH

3 ; Vl.00 ~s of 27/10/B4 Fred Will Ink CALL CVTl
"0
c ; VI.Ol ~s of 07/0B/B6 C. Thomas Hl'lton LD DE,BLM
CD ; Converted code to HMAC format CALL CHI....
<:.. , LD DE,EXM
0 BOOT EQU 0 ; CALL CHIc.... BOOS EQU 05H ; LD DE,DSM
::I
!!. FCBI EQU 5CH ; CALL CVT2- ; LD DE,DRM
iii
(,O ; other equates CALL CVT2
c , LD DE,ALVO
c».., ACROSS EQU B CALL CVTl
N ; LD DE,ALVI
~

ampro bios disk Id s~ve ~re~ CALL CHI
LD DE,CKS

~sc I I equates CALL CVT2
, LD DE,OFF
BELL EQU 07H ; bell CALL CVT2
TAB EQU 09H ; horz t~b ;
LF EQU OAH ; line feed LD HL,DSPLAY ; dph hble
CR EQU ODH ; carriage return CALL COSTR ; print It ~II

SPC EQU 20H ; sp~ce
pop HL
LD B,15

ORG 100H CALL HEX£M> ; print hexdu~ of dpb
; CALL COCRLF
START: LD Hl,O CALL COCRLF

ADD HL,SP ; hlaccp st~ck pointer RET
LD SP,STACK ; set up local st~~k .
PUSH HL ; save the ccp po Inter tor '-aturn SKEW: LD A,ACROSS ; number of records to display ~cross screen

TEST: LD A, CFCB1+1)
CP '/' LD CNPRINT> ,A ; save
JP Z,HELP ; help LD A, CFCBI) ; see If drive w~s specified
CP '1' DEC A ; test ff-no
JP Z,HELP JP P,REC2 ; yes, select drive
CALL DPB CALL FCN25 ; no, get current drive
CALL SKEW REC2: LD E,A
JP EXIT LD C,A

; CALL FCN14 ; select drive
HELP: LD HL,HLPMSG ; point to help mess~ge

CALL FCNJI ; get ~ddress of dph

CALL COSTR ; dlspl~y help LD E,CHU
INC HL

exit no warm boot LD D,CHU
; EX DE,HL
EXIT: POP HL ; recover ccp's stack ptr LD CNRECS) ,HL ; s~ve dph address for records per tr~ck

LD SP,HL LD A,24 ; offset for seldsk:
RET CALL BIOS ; hl~dph, de~xl~te t~ble

; LD E,CHU
DPB: LD A,CFCBl) ; drive code given 1 INC HL

DEC A ; convert ~al to 0 LD D,CHU ; de~dph

JP P,DPB2 PUSH HL
CALL FCN25 PUSH DE

DPB2: LD E,A ; s~ve for select PUSH BC
ADD A, 'A' ; make drive code printable EX DE,HL dph In hi
LD lDRIVE) ,A LD lDPHADR) ,HL and s~ve

CALL FCN14 CALL HEXADR dlspl~y dph address
CALL FCNJI LD HL,OPH tral lar mess~ge for ~ddress

PUSH HL ; s~ve It for dUmp CALL COSTR dlspl~y

~ I pop BC
POP DE

convert binary In hi to ascii decImal

subtract powers of 10

one to many add one back

set flag for non-zero character

how many zero's

print '0'

see If through now

done If zero
count down
and save

print ','
print space

tens

add neg number

ascii bias
print and return to caller

hundreds

ascii count

leading zero fill

cOlllp'ement
de

get count

set to zero
print

restore
skip leading zero
print character

less than 11
no
check 0 flag

A, (POSITl
o
Z
A
(POS ITl,A
A, '0'
COOT
A, (POSITl
o
Z
A ' •, ,
COUT
COSPAC
ZERFIL

B,O
DE,-lOO
SUBTR
DE,-10
SOOTR
A,L
A,'O'
COUT

C,'O'-l
C
HL,DE
C,SOOT2

A,D

D,A
A,E

E,A
DE
HL,DE
A,C

'I'
NC,NZERO
A,B
A
A,C
Z
COUT

B,OFFH
COUT

LD
CPL
LD
LD
CPL
LD
INC
ADD
LD

CP
JP
LD
OR
LD
RET
JP

check 10r zero

;
ZERFIL: LD

CP
RET
DEC
LD
LD
CALL
LD
CP
RET
LD
CALL
CALL
JP

;
DECOUT: LD

LD
CALL
LD
CALL
LD
ADD
JP

;
SUBTR: LD
SOOT2: INC

ADD
JP

;
NZERO: LD

JP
RET

get low byte
or with high
If zero no translate done
no translate message

offset to sectran
hl-xlate (bc)
display results

get last position
update and
save It
get byte
zero d
value In a
largest value

start of table
what position

t I I I through

none of those
see where In table
first position of 20
see If need zeros
hi has value

print decimal value
get count
see If done
yes, return
Insert comma

Insert space
see If done

1111 remaInder
count down
and save

clear record number
clear a
Initialize counter

for skew table
display
number of entries
set counter
get dph address
save It

HL
A,E
o
NZ,REC3
HL,NXLATE
COSTR

A,45
BIOS
PRINT
HL,(NRECS)
HL
A,L
H
Z,SHOWD
(NRECS),HL
BC
RECLOF'

HL,TBLMSG
COSTR
A,20
(POSITl,A
HL, (DPHADR)
(LASTl,HL
ENTRY

BC,O
A
(POS ITl,A

HL, (LASTl
HL
(LASTl,HL
E, (HLl
0,0
A,E
27
NC,ZERFIL
1
Z,WHERE
o
NZ,NOPE
A, (POSITl
20 .
NZ,ZERFIL
DE,HL
DECOUT
A, (POSITl
o
Z
A ' ,, ,
COOT
COSPAC
A,(POSITl
o
Z,ZERFIL
A
(POSITl,A
MORE

;
REC3: LD

XOR
LD

;
MORE: LD

INC
LD

ENTRY: LD
LD
LD
CP
JP
CP
JP
CP
JP

WHERE: LD
CP
JP

NOPE: EX
CALL
LD
CP
RET
LD
CALL
CALL
LD
CP
JP

NOTDON: DEC
LD
JP

POP
LD
OR
JP
LD
CALL
RET

;
RECLOF': LD

CALL
CALL
LD
DEC
LD
OR
JP
LD
INC
JP

,
SHOWD: LD

CALL
LD
LD
LD
LD
JP

Ii"
GIl
c:
CD...
N....,

~
CD

~
3
"0
c:-CD...
L
a
c:
3
!!.

a

,. .. ,. ;;.; .:1ifi

select disk, 'e' has drIve number
;
FCNI4: PUSH Be

PUSH DE
PUSH HL
LD C,14
CALL BOOS
POP HL
POP DE
POP BC
RET

print record entry

SubroutIne to do an addressed dump of one line. HL point to data,
'B' has length

display hi contents in hex

display hi In hex
space

HEXADR. ,.,", .
COUT
COSPAC

BC
HL
A,(HU
COHEX
COSPAC
HL

LD A,C
LD WE),A
INC DE
RET

DEC B
JP NZ,HEXL2
POP HL
POP BC
RET

,
HEXLIN: PUSH

PUSH
HEXL2: LD

CALL
CALL
INC

;
HEXDMP: CALL

LD
CALL
CALL

update

how many lInes across
save
start new lIne

print hi as hex words
Insert space
see If end of line

HEXADR
COSPAC
A, (NPRINn
A
(NPRINn,A
NZ
A,ACROSS
(NPRINn,A
COCRLF

PR INT : CALL
CALL
LD
DEC
LD
RET
LD
LD
CALL
RET

;j
CD

~
3
'0
C

i
C
o
c
3
!!.-i
c
CD

~

get current disk number, returns current disk In 'a' Subroutine to print hi as an address In hex

get dIsk parameters, returns 'hl'-dpb address

suboutrlne to return the hex value of 'a',
least significant half In 'c', most significant in 'a'.
used when ascii-hex Is to be stored.

print the hex byte In 'a'

~

;
FCN25: PUSH

PUSH
PUSH
LD
CALL
POP
POP
POP
RET

;
FCN31: PUSH

PUSH
LD
CALL
POP
POP
RET

;
CVT2: PUSH

INC
CALL
EX
CALL
POP
RET

;
CVTI: LD

INC
CVTI A: CALL

LD
INC

BC
DE
HL
C,25
BOOS
HI..
DE
Be

BC
DE
C,31
BOOS
DE
BC

HL
HI..
CVTI
(SP) ,HL
CVTI
HL

A,(HU
HI..
HEXBYT
(DE),A ,
DE

no drIve given, get current disk

hi - dpb for current disk

display 16 bit Integer

display byte at 'hi'

a,c-ascll display

;
HEXADR: LD

CALL
LD
CALL
RET

;
COHEX: PUSH

CALL
CALL
POP
CALL
CALL
RET

;
HEXLFT: RRA

RRA
RRA
RRA

,
HEXRHT: AND

CP
JP
ADD

,
HEXLR: ADO

RET

A,H
COHEX
A,L
COHEX

AF
HEXLFT
COUT
AF
HEXRHT
COUT

OFH
OAH
C,HEXLR
A, 'A'-3AH

A,'O'

save byte
get left half
and print
restore byte
right half and
print

make left nibble

make right nibble

POP AF
RET

subroutine to write bytes ~ddressed by hi, termln~ted by I~st byte with
80 bit set.

mess~ge strings
,
DSPLAY:

strip bit 7

s~ve

get right nibble
save In c
restore ~nd get
left nibble

carrl~ge return
print It
line feed
and print It

cp/m fen 2

space
and print It

AF
HEXRHT
C,A
AF
HEXLFT

'H',TAB,'Dlrectory Check size' ,CR,LF
'OFF: '
4
'H',TAB,'Offset (Number of reserved tracksl',CR,LF,LF

': (DPH ~ddressl',CR,LF+80H

'''DPB ~ddress ~nd hex dump of t~ble'"

CR.LF+8OH

BELL,'Dlskette needs no transl~tlon'.CR,LF+BOH

'Skew table decimal values' ,CR,LF+80H

~

A,SPC
COUT

'DISKPRAM.COM - <H E L P>',CR,LF,LF
'Synt~x:',CR,LF

'AO>DISKPRAH <cr> - DP8 and SKEW t~ble for defalt drive'
CR,LF,'AO>DISKPRAH d: - Tables for selected drive'
CR,LF,'AO>DISKPRAH 1 or / - Dlspl~ys this mess~ge'
CR.LF

subroutine to write ,~, to console

subroutine to write a space to the console

;
COUT: PUSH BC

PUSH DE
PUSH HL
ANO 7FH
LD E,A
LD C,2
CALL BOOS
POP HL
POP DE
POP BC
RET

print cr,lf to the console
,
COCRLF: PUSH AF

LD A,CR
CALL COUT
LD A,LF
CALL GOUT
POP AF
RET

DEFB
DEFB

OFF: DEFS
DEFB

;
DMPMSG: DEFB

DEFB
;
NXLATE: DEFB
;
TBLMSG: DEFB
,
DPH: DEFB
; User help

HEXBYT: PUSH
CALL
LD
POP
CALL
RET

,
COSPAC: PUSH

LO
CALL

HLPMSG: OEFB
DEFB
OEFB
DEFB
DEFB
DEFB

get byte
print
again and test
for bit 7 set
yes, return
next byte
~nd continue

get warm boot ~ddress

~dd offset to wboot
to ~ddress of service
s~ve It
return ~ddress

A,(HLl
COUT
A, (HLl

C
HL
COSTR

DE
BC

BC
DE
HL, (BODHI)
A,L
L,A
HL
HL,BIORET
(SPI,HL
(HLl

CR,LF,'OISK PARAMETER BLOCK for drive'
1
': ',CR,LF
'SPT: '
4
'H',TAB,'Records Per Track.',CR,LF
'BSH: '
2
'H',TAB,'Block Shift Factor',CR,LF
'BLM: '
2
'H',TAB,'Block Mask',CR,LF
'EXM: '
2
'H',TAB,'Extent Mask',CR,LF
'D5M: '
4
'H' , TAB, '0 I sk SI ze-l ",CR,LF
'DRM: '
4
'H',TAB,'Dlrectory Size-l ',CR,LF
'ASVO: '
2
'H',TAB,'AI location Vector',CR,LF
'ALV1: I

2
'H', TAB,CR,LF
'CKS: I

4

PUSH
PUSH
LD
ADD
LD
PUSH
LD
EX
JP

bios service, offset In ,~,

,
COSTR: LD

CALL
LD
RLCA
RET
INC
JP

,
BIOS:

,
BIORET: POP

POP
RET

DEFB
DRIVE: DEFS

DEFB
DEFB

SPT: DEFS
DEFB
DEFB

BSH: DEFS
DEFB
DEFB

BLM: DEFS
DEFB
DEFB

EXM: DEFS
DEFB
DEFB

DSM: DEFS
DEFB
DEFB

DRM: DEFS
DEFB
DEFB

ALVO: DEFS
DEFB
DEFB

ALVI: DEFS
DEFB
DEFB

CKS: DEFS

-t::r
CD

bl
3
'0
C

i
C
o
c
3
!!!.

~

i$
loti
C
CD

~

iii &i ~

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

,
NRECS: DEFS
NPRINT: DEFS
DPHADR: DEFS
POSIT: DEFS
LAST: DEFS

DEFS
STACK: EQU

END

CR,LF,'Thls progr~ is designed to provide the U$er ~ith a'
, tool'
CR,LF,'that is able to display the DPB and SKEW table of a'
1 CP/M'
CR,LF,'2.2 system. This information can be used as the'
, decimal'
CR,LF,' input forla program such as ESET.COM ~rltten for the'
, AMPRO'
CR,LF,'system. With ESET the AMPRO"s E: drive may be used to
, read'
CR,LF,'and ~rite al ien 5" diskette formats' ,CR,LF,LF+80H

2
1
2
1
2

30
S

DISKPRAM. show in Listing 2. is a
public domain tool which is designed to
provide us with the basic information we
will require. What is needed is to run
DISKPRAM on the alien system. and
make a record of the parameters listed.
The values returned by this tool may be
installed in the "E" disk DPB. The disk
type byte information will generally be
known. Those portions of the type byte
data which are not known may be deter
mined by some experimentation with the
available parameters. The menu driven.
public domain utility "ESET.COM" may
be used to temporarily redefine the "E"
disk parameters. This program is
described in the AMPRO technical
manual.

(Continued on page 51)

~--
TCJ ORDER FORM

Subscriptions U.S. Canada Surface
Foreign

Total

6 issues per year
o New 0 Renewal 1year $16.00

2 years $28.00

Back Issues ----------------- $3.50 ea.
Six or more ----------------- $3.00 ea.
's

$22.00
$42.00

$3.50 ea.
$3.00ea

$24.00

$4.75 ea.
$4.25 ea.

All funds must be in U.S. dollars on a U.S. bank.

Total Enclosed

o Check enclosed 0 VISA 0 MasterCard Card # _

Expiration date. Signature _

Name _

Address _

City:lState, JAZIP -------

The Computer Journal
190 Sullivan Crossroad. Columbia Falls. MT 59912 Phone (406) 257-9119

L _

* * * Orders can also be entered by modem on the TCJ BBS (406) 752-1038 by leaving a private
message for SYSOP with the required information.

The Computer Journal/Issue 1127 41

Ever Wondered What Makes TuRBaPAscAL TIck?

Frank Gaude'
President
Echelon, Inc.

Echelon Responds
On page 46 of TCJ issue 24 appears a

letter from "D.D." Item (4) of the letter
states "The Z-System is public domain,
but surely the BIOS from Micromint or
Ampro is not public domain;
specifically, which files is one allowed to
copy for friends?"

Our reply. First, Z-System is NOT
public domain, period. All aspects of ZC
PR3 and ZRDOS that make up the Z
System are copyrighted. But ZCPR3,
CP/M CCP replacement, is special.
Programs and utilities written by
Richard Conn can be freely copied and
given to friends, but they can not be sold.
You need a license from Echelon to sell
ZCPR3 programs

Second, ZRDOS, the CP/M BDOS
replacement combined with ZCPR3 is Z
System, is licensed and supported by
Echelon. You need a license from
Echelon to sell ZRDOS:And it is against
the law to copy is and give it to friends.
Subject files are ZRDINSnn.COM and
ZRDOSnn.BIN, where "nn" is the ver
sion number. But support utilities
associated with ZRDOS can be feeely
given to friends who have obtained ZR
DOS package from us. These are AC,
VTYPE, VIEW, SFA, DFA, COMP,
DOSERR, DOSVER, DISKRST,
LOGGED, DRO, SRO, and SRW. Each
was written to take advantage of
features of Z-System and thus only run if
ZRDOS is present.

Z-System is fully copyrighted by
Richard Conn, Denis Wright, and
Echelon. To sell and support Z-System is
one reason Echelon is in business.

Last, those who receive Z-System fully
installed on their computer, e.g., on
Micromint's SBI80, and want to become
involved with the Z-System community,
should subscribe to our fortnightly
newsletter, Z-NEWS. It sells for $24.00
per year. Also we have a free catalog of
interesting Z80 and HD64180 Z-System
and CP/M compatible software produc
ts. Additionally, we support over 60
remote access systems called Z-Nodes
around the world acting as electronic
forums for people interested in Z
System.

N.E.

Editor's Note: The documentation will
be very much appreciated for our
reference files which will be used to
assist people working with older
systems. Can anyone help with the info
N.E. needs?

His project sounds interesting and if
enough readers express an interest we'll
try to get him to submit an article, in the
meantime if someone is willing to assist
him with the software, contact TCJ for
his address.

in RAM memory. The menu would also
have items like "To return data enter D
[RETURN]". At this time the small
board would dump the RAM data into the
host.

Using the EEPROM makes the
operating system non-volatile and easily
upgraded. The entire assembly process
could be supplied on a disk. I have the
wire list and component layout for wire
wrap in a WordStar format now. I don't
see why it could not be put in a CP/M file
like README.TYP. Anyone building
this should buy the book. Some of the
items (such as the video and casette
storage) are obsolete, but he has some
very good discussions on the CPU and
programming, as well as the operating
theory of computers in general.

My soldering iron is warm now. If this
project works, I will let you know. If
anyone is interested in developing sof
tware of the type described above, the
assistance would be appreciated. The
profitability of this system is close to ab
solute zero - that's why it should be in
the public domain.

Source Code Generators
by C. C. Software can
give you the answer.

,

J~

I
.~

. ·rJ.l!
'0 ,),

<0 -The Cod. Bueter.

The SCG-TP program produces
~ commented and labeled
source code for your TURBO
Pascal system. To modify,

just edit and assemble. Version 3.00A (zaO) is $45.
SCG's available for CP/M 2.2 ($45) and CP/M. ($75).
Please include $1.50 postage (in Calif add 6.5%).

"The darndest thing
I ever did see •.. "

" ... if you're at
all interested in
what's going on in
your system, it's
worth it."
Jerry Pournelle,
BYTE, Sept '83

Feedback
(Continued from page 35)

vironmental monitor. All data will be
collected as frequencies (counts), so~
sixteen bits will provide a convenient in
put mode. This is primarily because my
moisture detector (the most difficult) is
a frequency dependent device. Then
resistance, light and events will just be
counted, and entered as numbers also, to
be decoded by software.

Yes, software - I have none. Some
modifications have been made to the
board to make it more transportable to
other beginners. The memory is now a
6116 2Kx8 RAM, which exactly matches
a 2716 EPROM and a 52B13 ($1.95

Jameco) EEPROM. (See Byte
February, 1984, pages 343-344>' The sof
tware (which does not exist - yet!) is to
be completely dumped from a CP/M
machine over the parallel or serial ports.
This is to be a ROMless computer. If the
builder/user does not have a EPROM
Programmer handy, the entire program
could be dumped from disk into the RAM
or EEPROM by way of a full computer.

Thus far, the needs for the software
areas follows: Warm boot and reset
commands to initialize the system. There
should be some user commands to set up
the ports for data collection. These will
be in English (on the screen) but the
responses will cause the host computer to
send appropriate machine language in
structions to the Z-80 board. These will be
in the form of; "Port 0 is to be examined
every: [Al MINUTE; [B) HOUR; [C)
DAY." Answering this question sets the
timer function to collect data from port 0
at the appropriate interval, and store it

C. C. Software, 1907 Alvarado Ave. Dept M
Walnut Creek, CA 94596 (415)939-8153

CP/M is a reqistered trademark of Oiqital Research, Inc.
TURBO Pascal is a trademark of Borland International

50 The Computer Journal/Issue #127

Computer Corner

(Continued from page 52)

cheap), it is standardized, plenty of sup
pliers, biggest assortment of cards and
CPUs. I think the biggest thing goiilg for
the SID bus is the manufacturer's in
novative abilities. There are several
manufactureers who have complete
systems with 3 inch disks all in a stan
dard cage running compatible PC
operations,

The most important aspect is support
and STn bus people have been suppor
ting other manufacturers for some time
and know just what they need. One com
pany I have had some experience with is
Giddings and Lewis they make big lathes
as well as the electronics to drive them.
We happen to have their old style
systems but they also make SID produc
ts, or I should say they buy most of their
cards (CPU and memory) except the
special I/O they need. I attended one of
their sales seminars on the STn unit
(also a factory school on the big system)
and was given not only a demonstration
of how the system worked but all their
source code for the special math routines
they use. They feel that if you are going
to properly use the product (or maintain
it) you must have all the code they use.
When asked about who supplies the cards
which they don't make, they gladly tell
you where to get them. Their attitude is
that they sell a complete service of large
machines and controllers and your
satisfaction with their entire line is more
important than a few lines of code they
wrote.

On the other side of the coin is a
product which I personally was able to
buy recently. The same friends who sold
me my portable, also had a GIMIX
system they got at auction which was
gathering more dust than use. I removed
this unit from their warehouse and have
been trying to use it ever since. What
really got me was the factory response
when I called them for information. Now
their literature says they do not make
any consumer products, only industrial
use is warranted, but if my use had been
industrial I certainly would not use them.
What happened was nothing, they stated
they destroyed all information on older
products and would not sell me anything
to help me bring the unit up. When I
asked what I should do they said to use it
for parts. I was able to use a third party
to receive information and have since
found out that these units are their
current versions but with them
destroying their documentation it is

The Computer Journal/Issue #127

rather hard to know what is really
current. I have several disk cards to sell
as this unit was a disk drive tester with
eight disk cards and must have cost
someone over $9,000 in the beginning. If I
had been a manufacturer and spent nine
grand for several systems, only to have
the manufacturer say I must bUy a whole
new system to fix myoId one, that would
be the last time I did business with him.

Well that one call is the last time I will
call GIMIX and they are not the only
company I will refuse to do business with
due to poor support or documentation.
Another big company which I will have
little to do with is GE. We have one of
their big industrial controllers and it
must be the most difficult unit to work
on. Becuse I had had so much trouble
figuring out their tiocurnentation and
many other forms of troubles with them,
when it became time to upgrade an old
lathe I got our managers to buy a older
style Gidding and Lewis (G&L) con
troller. The managers wanted to buy
another GE controller because of the
name, until I explained all the trouble I
had, then they knew why they hadn't
heard the G&L name much before this,
the product caused little problems. The
GE was a mess and they lost $300,000 to
G&L. You might say that was only one
case, not so, we are buying our second
wrapping machine from another com
pany because the first company's sof
tware people and support engineers were
unorganized and too tight with their sof
tware. This unit used a G&L controller
but they couldn't program it properly, so
we went with a company that was open
and using a multibus system running
multiple CPUs. The first company's poor
manament structure cost them two
wrapping machine at over $300,000 each.
So when people talk to me about how im
portant support is, I say very.

Trying to pull all this together and con
clude this column is not an easy task.
Art's editorial last issue got me thinking
of what type of products to use and how
the industry has gone hardware crazy. I
pointed out how support is important and
keeping in mind the basic functions you
hope to achieve with your system. I have
many systems at home and work to play
with, but still find myoid CP1M systems
running Wordstar to be the best. Why,
because they are easy to use and simple
to run. I can learn all the insides without
too much problem, and do all my own
work without spending a lifetime of
study. For me SIMPLE is still the best.

Things to keep in mind are your objec-

tives, costs, support, and your skills
level. Programs that do ten times more
than you need may do what you want so
poorly that a simpler and cheaper
product would be more appropriate
(which is why I like WordStar). Har
dware systems that have complex
operating systems may leave less than
64K for your programs (PCnoS running
Framework and 384K mem). Graphic
systems are nice but if they are so com
plex to program that you will not be able
to write to them yourself, why bother?

A solution for some user may be the
same one I have chosen. Some time ago I
started on a 68K FORTH operating
system. Hawthorne Technology has
saved me from that task (at present) but
I have become stronger in my feelings
that S<'me form of a standard language
and operating system is needed. I can
use four different CPUs (6809, 280/8080,
8088, 68K) and need some common way
of going between them freely. FORTH is
currently the only option for me. STn
Bus users are also using FORTH because
it is fast ami can work in small memory
systems. If you're interested in FORTH
look at past FORTH articles as well as
my TUTOR program elsewhere in TCJ.

I think I will save some comments for
next month, so happy computing. •

Dis~ Parameters

(Continued from page 49)

Well, we have more theory than ap
plication in this article,and because of
the size of the listings and figures we had
better bring this session to a halt. I
suggest you study the data given in this
issue until the meaning of each byte of
these parameters is understood fully. It
would not hurt to design a disk format of
your own, in practice, to better under
stand the decisions made by the designer
of the AMPRO format. •

The public domain DISKPRAM
program source code and object code
files plus other related files are available
on eight bit 5.25- AMPRO, Kaypro,
Morrow. and several other popular for
mats for $10 postpaid in the U.S.

• • •

51

THE COMPUTER CORNER
I A Column by Bill Kibler

Well here I sit before my new com
puter on Thanksgiving Day putting down
my thoughts before I forget them. You
might think I am at my home, but no I
am at my mother's waiting for the rest of
thE family to arrive. The machine I am
using is my new Heath/Zenith 171QD por
table PC. This is the same unit the IRS
bought and yea the same one that
Morrow sold to ZDS for a small sum of
money, without any royalities. I needed
the machine for my college work and it is
my only PC compatible machine (and
will be the only one tool. Thanks to some
friends of mine I was able to pick it up for
much less than the going price, but even
then the unit is a bit expensive for what
you get. I have found the keyboard to be
very good, in fact I like it better than any
PC or PC clone's keyboard I have tried.
After getting this I noticed how far apart
most of the other keyboards keys were
(PC types). What all this is leading into is
my increased use and knowledge of PC
programs.

My masters work is moving along well
and most of the work I am doing !lOW is
on PCs with PC type programs. What I
have found out so far is the current trend
in PC programs - use of the function and
cursor keys exclusively. I must admit
that my first wordprocessing program
was WordStar, mostly because I worked
there. Now I still use this program and
am writing this article on it. I have tried
several other PC word processors and
have not liked a SIngle one of them. The
reason is their use of the function keys.
WordStaf'!' can use function keys if you
want, but most of the cursor movement
can be made without lifting your hands
from the home postion. I recently spent a
month on Framewor~ , an integrated
package of wordprocessing, database,
and spreadsheet. This program has some
good features but for the most part I
hated it. It seemed every third keystroke
was a function key or cursor movement
key, without any optional ways around
them. What really made me hate the
program was their use of the + and - cur
sor position keys. If you look at the key
codes produced by a PC keyboard there
are diffel'ent key codes for every possible
use of the keys. The number pad can be

52

numbers, cursor positioning functions,
as well as control and alternate options
too. What Framework and other
programs do is use all these possible
combinations to get their options.

Wordstar divided their options into
groups and you get to those groups by
doing a control key entry, then use a
regular key to run the option. These other
prorams are using a single keycode for
an option. This means you must have a
compatible keyboard and you must also
(in most cases) move your hands from
the home keys to use or invoke an option.
I will admit that any user will probably
always like their first system and first
wordprocessor. but these new unit didn't
really look at the old unit and build on
their good or bad options. Some of these
new units handle text better than Wor
dstar for desktop publishing options (like
multicolumn formating), but overall I
feel the programmers got impressed by
the options available and went crazy.
This going crazy with options and
technology is really what I want to talk
about.

I just finished reading the last issue of
Computer Journal and feel that what Art
was trying to say and what I just talked
about are related. In the early days,
computers did very little and anything
that worked was wonderful. Most of us
bought systems just to see what could be
done. That time is gone now, althought I
still buy systems to check out (more
later), but I basically buy them to use for
some productive work. When doing wor
dprocesing (which is approximately 70%
of all computer use) I want something
which allows me to write easily and
quickly without a lot of hand movement.
Now all these extra bells and whistles are
nice as long as they don't stop me from
doing the original objective, writing. I
have found that statement to be true also
for operating systems as well as com
puter languages. I think anybody who
has used Turbo PascalI!> to write a
program will say that one of its best
features is the ease with which you can
use it. From the Wordstar like editor to
the error correction process, I find that
with Turbo I can do in four hours what
would have taken two days using conven-

tional systems. The why is the objective
approach of the system.

I currently feel that the computer in
dustry is running amuck with all the new
found speed and options. Programs (and
hardware too) are being pushed to their
limits, in many cases just to find those
limits. Now I have little complaint about
finding out just how far you can push
things, I did that when I first learned how
to drive. After finding myself in a ditch
one night, I learned when to push and
when not to. The industry hasn't learned
when not to push, and I feel this is due to
sell, sell, and more sell. The competion is
fierce and only getting worse. Anybody

. who really says "I liked it when... ", will
be considered old fashioned or not with it
by most computer users. Nice ideas, but
what really are we trying to do, I feel the
objective is to get the job done in the
most cost effective and time efficent
manner. Computers can do that but only
if used properly.

I think Art and others like him are
heading in the right direction by using
combinations of existing products to
achieve their goals. One area that I have
been pushing for some time is the use of
the SID bus for industrial control. Any
company that started using STD bus with
Z80 or 6809 CPUs can now upgrade to 8088
or 68000 by only changing their CPU car
ds. All their I/O and memory will most
likely work without any changes. This
type of upgrading is hard to beat. Where
I work we have many industrial con
trollers all with different software and
hardware. To maintain or program these
systems requires sending the personnel
to a factory school (always on the other
side of the USA) and then being locked in
to their price and service. STD bus
products are available in many con
figurations with some local dealer or
manufacturer support available.
Because the basic CPU can be the same
for all uses, only learning one system is
needed for programming or maintaining.
When it comes to really special uses
where you must build your own, with
STD you only build that part which can't
be found elsewhere. The reason I like
STD bus over others is cost (they're

(Continued on page 51)

The Computer Journal/Issue #127

I_----B-a-ck-ls-s-u-es-A-va-i-la-b-le-:-----1
- lue Number 1:

- RS0232 Interface Part One
Telecomputing with the Apple II

• Beginner's Column: Getting Started
• Build an "Epram"

_ lYe Number 2:
File Transfer Programs for CP/M

• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1

Review of Floppy Disk Formats
Sending Morse Code with an Apple II

• Beginner'S Column: Basic Concepts
and Formulas

_ lue Number 3:
Add an 8087 Math Chip to Your Dual

r (ocessor Board
• Build an A/D Converter for the Apple
TT

Modems for Micros
The CP/M Operating System

• Build Hardware Print Spooler: Part 2
Ta'iue Number 4:

- Optronics, Part 1: Detecting,
merating, and Using Light in Elec

tronics
• Multi-User: An Introduction

Making the CP/M User Function More
;eful

- Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
T\~ign

lue Number 5:
Jptronics, Part 2: Practical Ap

plications
• Multi-Processor Systems

frue RMS Measurements
Gemini-lOX: Modifications to Allow

both Serial and Parallel Operation
Issue Number 6:
- BUild High Resolution 8-100 Graphics

I&fd: Part 1
• System Integration, Part I: Selecting
System Components
, :>ptronics, Part 3: Fiber Optics

~ntrollingDC Motors
, _~ulti-User: Local Area Networks
• DC Motor Applications
[-,ue Number 8:
, Build VIC-20 EPROM Programmer
, .~ulti-User: CP/Net
• Build High Resolution 8-100 Graphics
Board: Part 3
, iystem Integration, Part 3: CP/M 3.0
, :.inear Optimization with Micros
Issue Number 9:
• Threaded Interpretive Language, Part

Introduction and Elementary
: IUtines
~ 1nterfacing Tips & Troubles: DC to DC
Converters
• \fulti-User: C-NET
, fteading PCDOS Diskettes with the
,)rrow Micro Decision
• DOSWars
• Build a Code Photoreader

Issue Nymber14:
• Hardware Tricks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• 8-100 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2
Issue Number 15:
• Interlacing the 6522 to the Apple II
• Interfacing Tips & Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three
Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 8-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter
Issue Number 17:
• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-64: Facsimile Pictures on a
Micro
• The Computer Corner
Interfacing Tips & Troubles: Memory
Mapped I/O on the ZX81

Issue Number 18:
• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• S-I00 Graphics Screen Dump
• The LS-lOO Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 8-100 Floppy Disk Controller:
WD'J:l97 Controller for CP/M 68K
• The Computer Corner

bye Number 21:
• xtendiDg Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: IntrodUCtory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C COlumn: Flow Control & Program
Structure
• The Z Column: Getting Started with
Directories & User Areas
• The SCSI Interface: Introduction to
SCSI
• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 24:
• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The CColumn: Software Text Filters
• AMPRO 186 Column: Installing Ms
DOS Software
• The Z Column
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-l: A Realtime Clock for the
AMPRO Z-80 Little Board
Issue Number 25:
• Repairing & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
Issue Number 26;
• Bus Systems: Selecting a System Bus
• Using the SBI80 Real Time Clock
• The SCSI Interface: Software for the
SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con
tinued
• ZSIG Corner
• Affordable C Compilers
• Concurrent Multitasking: A Review of
DoubieDOS
• The Computer Corner

